--- base_model: [] library_name: transformers tags: - mergekit - merge license: llama3.3 --- I was curious about using Euryale as the base for Progenitor for a while, this is the result. # Progenitor-V3.2-70B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Linear DELLA](https://arxiv.org/abs/2406.11617) merge method using D:/mergekit_models/L3.3-70B-Euryale-v2.3 as a base. ### Models Merged The following models were included in the merge: * D:/mergekit_models/Negative_LLAMA_70B * D:/mergekit_models/L3.1-70B-Hanami-x1 * D:/mergekit_models/EVA-LLaMA-3.33-70B-v0.1 * D:/mergekit_models//70B-L3.3-Cirrus-x1 * D:/mergekit_models/Anubis-70B-v1 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: D:/mergekit_models/L3.1-70B-Hanami-x1 parameters: weight: 0.20 density: 0.7 - model: D:/mergekit_models//70B-L3.3-Cirrus-x1 parameters: weight: 0.20 density: 0.7 - model: D:/mergekit_models/Negative_LLAMA_70B parameters: weight: 0.20 density: 0.7 - model: D:/mergekit_models/Anubis-70B-v1 parameters: weight: 0.20 density: 0.7 - model: D:/mergekit_models/EVA-LLaMA-3.33-70B-v0.1 parameters: weight: 0.20 density: 0.7 merge_method: della_linear base_model: D:/mergekit_models/L3.3-70B-Euryale-v2.3 parameters: epsilon: 0.2 lambda: 1.1 dype: float32 out_dtype: bfloat16 tokenizer: source: base ```