vdelvtak commited on
Commit
9057844
·
verified ·
1 Parent(s): 8e7e651

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -1,3 +1,44 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - fr
5
+ - en
6
+ base_model:
7
+ - google-bert/bert-base-uncased
8
+ pipeline_tag: text-classification
9
+ library_name: sentence-transformers
10
+ ---
11
+
12
+ # Takeda Section Classifier
13
+ Pretrained model (finetuned version of [BERT Multilingual Uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)) on french and english documents using supervised training for sections classification.
14
+ This work has been made by Digital Innovation Team from Belgium 🇧🇪 (LE).
15
+
16
+ ## Model Description
17
+ The model aims at classifying text in classes representing part of reports:
18
+ * Description
19
+ * Immediate Correction
20
+ * Root Cause
21
+ * Action Plan
22
+ * Impacted Elements
23
+
24
+ ## Intended uses & limitations
25
+ The model can be use for Takeda documentation, the team do not guarantee results for out of the scope documentation.
26
+
27
+ ## How to Use
28
+ You can use this model directly with a pipeline for text classification:
29
+
30
+ ```python
31
+ from transformers import (
32
+ TextClassificationPipeline,
33
+ AutoTokenizer,
34
+ AutoModelForSequenceClassification,
35
+ )
36
+ tokenizer = AutoTokenizer.from_pretrained("TakedaAIML/section_classifier")
37
+
38
+ model = AutoModelForSequenceClassification.from_pretrained(
39
+ "TakedaAIML/section_classifier"
40
+ )
41
+
42
+ pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
43
+ prediction = pipe('this is a piece of text representing the Description section. An event occur on june 24 and ...')
44
+ ```