--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T model-index: - name: outputs/qlora-out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T bf16: auto dataset_prepared_path: null datasets: - path: Taiel26/plm_2500_uniref type: alpaca debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 2 model_type: LlamaForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./outputs/qlora-out pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# outputs/qlora-out This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0919 | 0.0198 | 1 | 2.0800 | | 1.5479 | 0.2574 | 13 | 1.5341 | | 1.2083 | 0.5149 | 26 | 1.2245 | | 1.0851 | 0.7723 | 39 | 1.0607 | | 0.9432 | 1.0297 | 52 | 0.9755 | | 0.9007 | 1.2178 | 65 | 0.9334 | | 0.8765 | 1.4752 | 78 | 0.9084 | | 0.8789 | 1.7327 | 91 | 0.8891 | | 0.8304 | 1.9901 | 104 | 0.8779 | | 0.8194 | 2.1782 | 117 | 0.8714 | | 0.848 | 2.4356 | 130 | 0.8665 | | 0.8354 | 2.6931 | 143 | 0.8627 | | 0.8476 | 2.9505 | 156 | 0.8605 | | 0.811 | 3.1386 | 169 | 0.8590 | | 0.8178 | 3.3960 | 182 | 0.8588 | | 0.8073 | 3.6535 | 195 | 0.8586 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1