Last commit not found
#!/usr/bin/env python3 | |
import argparse | |
import re | |
from typing import Dict | |
from datasets import Audio, Dataset, load_dataset, load_metric, DatasetDict | |
from transformers import AutoFeatureExtractor, pipeline | |
def log_results(result: Dataset, args: Dict[str, str]): | |
"""DO NOT CHANGE. This function computes and logs the result metrics.""" | |
log_outputs = args.log_outputs | |
dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) | |
# load metric | |
wer = load_metric("wer") | |
cer = load_metric("cer") | |
# compute metrics | |
wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) | |
cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) | |
# print & log results | |
result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" | |
print(result_str) | |
with open(f"{dataset_id}_eval_results.txt", "w") as f: | |
f.write(result_str) | |
# log all results in text file. Possibly interesting for analysis | |
if log_outputs is not None: | |
pred_file = f"log_{dataset_id}_predictions.txt" | |
target_file = f"log_{dataset_id}_targets.txt" | |
with open(pred_file, "w") as p, open(target_file, "w") as t: | |
# mapping function to write output | |
def write_to_file(batch, i): | |
p.write(f"{i}" + "\n") | |
p.write(batch["prediction"] + "\n") | |
t.write(f"{i}" + "\n") | |
t.write(batch["target"] + "\n") | |
result.map(write_to_file, with_indices=True) | |
def normalize_text(text: str) -> str: | |
"""DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" | |
chars_to_ignore_regex = '[,?.!\-\;\:"β%ββοΏ½βββ¦β]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training | |
text = re.sub(chars_to_ignore_regex, "", text.lower()) | |
# In addition, we can normalize the target text, e.g. removing new lines characters etc... | |
# note that order is important here! | |
token_sequences_to_ignore = ["\n\n", "\n", " ", " "] | |
for t in token_sequences_to_ignore: | |
text = " ".join(text.split(t)) | |
return text | |
def get_bengali_dataset(validation_split=False): | |
dataset = load_dataset('openslr', 'SLR53') | |
seed=1242 | |
if validation_split: | |
train_testvalid = dataset['train'].train_test_split(test_size=0.2, seed=seed) | |
# Split the 10% test + valid in half test, half valid | |
test_valid = train_testvalid['test'].train_test_split(test_size=0.33, seed=seed) | |
# gather everyone if you want to have a single DatasetDict | |
out_dataset = DatasetDict({ | |
'train': train_testvalid['train'], | |
'test': test_valid['test'], | |
'valid': test_valid['train']}) | |
else: | |
train_testvalid = dataset['train'].train_test_split(test_size=0.1, seed=seed) | |
out_dataset = DatasetDict({ | |
'train': train_testvalid['train'], | |
'test': train_testvalid['test']}) | |
return out_dataset | |
def main(args): | |
# load dataset | |
bn_dataset = get_bengali_dataset(validation_split=False) | |
def load_bn_dataset(split): | |
return bn_dataset[split] | |
# dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) | |
dataset = load_bn_dataset(split=args.split) | |
# for testing: only process the first two examples as a test | |
# dataset = dataset.select(range(10)) | |
# load processor | |
feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) | |
sampling_rate = feature_extractor.sampling_rate | |
# resample audio | |
dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) | |
# load eval pipeline | |
asr = pipeline("automatic-speech-recognition", model=args.model_id, device=0) | |
# map function to decode audio | |
def map_to_pred(batch): | |
prediction = asr( | |
batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s | |
) | |
batch["prediction"] = prediction["text"] | |
batch["target"] = normalize_text(batch["sentence"]) | |
return batch | |
# run inference on all examples | |
result = dataset.map(map_to_pred, remove_columns=dataset.column_names) | |
# compute and log_results | |
# do not change function below | |
log_results(result, args) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with π€ Transformers" | |
) | |
parser.add_argument( | |
"--dataset", | |
type=str, | |
required=True, | |
help="Dataset name to evaluate the `model_id`. Should be loadable with π€ Datasets", | |
) | |
parser.add_argument( | |
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" | |
) | |
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") | |
parser.add_argument( | |
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." | |
) | |
parser.add_argument( | |
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." | |
) | |
parser.add_argument( | |
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." | |
) | |
args = parser.parse_args() | |
main(args) | |