Houses-Prices-Prediction / HousePricesModel.py
Tahani1's picture
Create HousePricesModel.py
4a63a7c verified
raw
history blame
1.09 kB
import numpy as np
import joblib
import gradio as gr
# Load the trained model and preprocessing tools
model = joblib.load("knn_house_model.pkl")
scaler = joblib.load("scaler.pkl")
label_encoder = joblib.load("label_encoder.pkl")
# Function to predict house price
def predict_price(num_rooms, distance, country, build_quality):
country_encoded = label_encoder.transform([country])[0]
features = np.array([[num_rooms, distance, country_encoded, build_quality]])
features_scaled = scaler.transform(features)
predicted_price = model.predict(features_scaled)[0]
return f"Predicted House Price: ${predicted_price:,.2f}"
# Gradio Interface
inputs = [
gr.Number(label="Number of Rooms"),
gr.Number(label="Distance to Center (km)"),
gr.Dropdown(label="Country", choices=label_encoder.classes_.tolist()),
gr.Slider(minimum=1, maximum=10, label="Build Quality")
]
outputs = gr.Textbox(label="Prediction Result")
# Create and launch Gradio app
app = gr.Interface(fn=predict_price, inputs=inputs, outputs=outputs, title="House Price Prediction")
app.launch()