File size: 2,143 Bytes
4f3eefa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Model Detail Information

### 1. Overview
   
This model is trained to detect the presence of harmful expressions in Korean sentences.<br>
It performs binary classification to determine whether a given sentence contains hateful expressions or is a general, non-hateful sentence.<br>
This model is designed for the AI task of 'text classification', using the 'TTA-DQA/hate_sentence' dataset.<br>

The classification labels are:
- "0": "no_hate"
- "1": "hate"

### 2. Training Information
   
- Base Model: KcElectra (a pre-trained Korean language model based on Electra)
- Source: beomi/KcELECTRA-base-v2022(https://huggingface.co/beomi/KcELECTRA-base-v2022)
- Model Type: Casual Language Model
- Pre-training (Korean): Approximately 17GB (over 180 million sentences)
- Fine-tuning (hate dataset): Approximately 22.3MB(TTA-DQA/hate_sentence)
- Learning Rate: 5e-6
- Weight Decay: 0.01
- Epochs: 20
- Batch Size: 16
- Data Loader Workers: 2
- Tokenizer: BertWordPieceTokenizer
- Model Size: Approximately 512MB

### 3. Requirements
   
To use this model, ensure the following dependencies are installed:
- pytorch ~= 1.8.0
- transformers ~= 4.11.3
- emoji ~= 0.6.0
- soynlp ~= 0.0.493

### 4. Quick Start
   
- python
```python
from transformers import AutoTokenizer, AutoModel
  
tokenizer = AutoTokenizer.from_pretrained("TTA-DQA/HateDetection-KcElectra-FineTuning")
model = AutoModel.from_pretrained("TTA-DQA/HateDetection-KcElectra-FineTuning")

```

### 5. Citation
   
- This model was developed as part of the Quality Validation Project for Super-Giant AI Training Data (305-2100-2131, 2024 Quality Validation for Super-Giant AI Training).

### 6. Bias, Risks, and Limitations
   
- The determination of harmful expressions may vary depending on language, culture, application context, and personal perspectives.
- Results may reflect biases or lead to controversy due to the subjective nature of evaluating harmful content.
- This model's outputs should not be considered as definitive standards for identifying harmful expressions.

# Results
- type : binary classification(text-classification)
- f1-score : 0.9928
- accuracy : 0.9928