TSjB commited on
Commit
e4f1500
·
verified ·
1 Parent(s): 422d8a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -6
README.md CHANGED
@@ -5,12 +5,14 @@ tags:
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
-
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
@@ -26,13 +28,59 @@ Then you can use the model like this:
26
 
27
  ```python
28
  from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{MODEL_NAME}')
32
  embeddings = model.encode(sentences)
33
  print(embeddings)
34
  ```
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
 
38
  ## Evaluation Results
@@ -90,4 +138,4 @@ SentenceTransformer(
90
 
91
  ## Citing & Authors
92
 
93
- <!--- Describe where people can find more information -->
 
5
  - sentence-transformers
6
  - feature-extraction
7
  - sentence-similarity
8
+ license: cc-by-nc-sa-4.0
9
+ language:
10
+ - krc
11
  ---
12
 
13
+ # TSjB/labse-krc
14
 
15
+ It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
16
 
17
  <!--- Describe your model here -->
18
 
 
28
 
29
  ```python
30
  from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Бу айтым юлгюдю"]
32
 
33
+ model = SentenceTransformer('TSjB/labse-krc')
34
  embeddings = model.encode(sentences)
35
  print(embeddings)
36
  ```
37
 
38
+ ```r
39
+ library(data.table)
40
+ library(reticulate)
41
+ library(ggplot2)
42
+ library(ggrepel)
43
+ library(Rtsne)
44
+
45
+ py_install("sentence-transformers", pip = TRUE)
46
+ st <- import("sentence_transformers")
47
+
48
+ english_sentences = base::c("dog", "Puppies are nice.", "I enjoy taking long walks along the beach with my dog.")
49
+ italian_sentences = base::c("cane", "I cuccioli sono carini.", "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.")
50
+ qarachay_sentences = base::c("ит", "Итле джагъымлыдыла.", "Джагъа юсю бла итим бла айланыргъа сюеме.")
51
+
52
+ model = st$SentenceTransformer('TSjB/labse-krc')
53
+
54
+ english_embeddings = model$encode(english_sentences)
55
+ italian_embeddings = model$encode(italian_sentences)
56
+ qarachay_embeddings = model$encode(qarachay_sentences)
57
+
58
+ m <- rbind(english_embeddings,
59
+ italian_embeddings,
60
+ qarachay_embeddings) %>% as.matrix
61
+
62
+ tsne <- Rtsne(m, perplexity = floor((nrow(m) - 1) / 3))
63
+
64
+
65
+ tSNE_df <- tsne$Y %>%
66
+ as.data.table() %>%
67
+ setnames(old = c("V1", "V2"), new = c("tSNE1", "tSNE2")) %>%
68
+ .[, `:=`(sentence = c(english_sentences, italian_sentences, qarachay_sentences),
69
+ language = c(rep("english", length(english_sentences)),
70
+ rep("italian", length(italian_sentences)),
71
+ rep("qarachay", length(qarachay_sentences))))]
72
+
73
+
74
+ tSNE_df %>%
75
+ ggplot(aes(x = tSNE1,
76
+ y = tSNE2,
77
+ color = language,
78
+ label = sentence
79
+ )
80
+ ) +
81
+ geom_label_repel() +
82
+ geom_point()
83
+ ```
84
 
85
 
86
  ## Evaluation Results
 
138
 
139
  ## Citing & Authors
140
 
141
+ [Bogdan Tewunalany](https://t.me/bogdan_tewunalany), [Ali Berberov](https://t.me/ali_bulat1990)