File size: 19,362 Bytes
d1789b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
---
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
datasets: []
language: []
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:64000
- loss:DenoisingAutoEncoderLoss
widget:
- source_sentence: 𑀟चन𑀙𑀢𑀟 𑀞च𑀪च𑀠च 𑀫𑁣प𑁣 𑀞न𑀠च 𑀞𑁣𑀱च ब𑀢𑀪𑀠च𑀯
  sentences:
  - '  णच ब𑀢𑀪𑀠च पच𑀪𑁦 𑀣च 𑀠च𑀫च𑀢𑀲𑀢णच𑀪𑀳च 𑀣च झच𑀟𑁦𑀟𑀳च ञचणच𑀦 𑀞च𑀠च𑀪 णच𑀣𑀣च 𑀠च𑀫च𑀢𑀲𑀢𑀟𑀳च णच ढच𑀪
    𑀢णचल𑀢𑀯'
  - ' 𑀣च𑀟बच𑀟𑁦 𑀣च 𑀟चन𑀙𑀢𑀟 𑀠𑁣पच𑀪𑀦 पच𑀟च 𑀢णच 𑀤च𑀠च ढचढढच 𑀞𑁣 𑀞च𑀪च𑀠च 𑀢𑀣च𑀟 च𑀞च 𑀞𑀱चपच𑀟पच 𑀣च
    𑀠𑁣पच𑀪 𑀣चन𑀞च𑀪 𑀫𑁣प𑁣 𑀣च 𑀳नख𑀦 𑀞न𑀠च णच 𑀲𑀢 𑀟च 𑀞𑁣𑀱च ब𑀢𑀪𑀠च𑀯'
  - पच𑀪𑁦𑀠𑀢 णच ढनबच 𑀱च झन𑀟ब𑀢णच𑀪 झ𑀱चलल𑁣𑀟 झच𑀲च पच ञचल𑀢ढ𑀢𑀟 झच𑀳च𑀪 𑀢𑀪च𑀟  बच𑀳च𑀪 पन𑀪𑀞𑀢णणच
    𑀞न𑀠च णच त𑀢 𑀱च झन𑀟ब𑀢णच𑀪 𑀞𑀱चललचण𑁦 थ𑀯
- source_sentence: णच𑀟च बचढच 𑀣च लन𑀪च 𑀣च 𑀣च पच 𑀲𑀢 𑀣च
  sentences:
  - 𑀘𑁣𑀫𑀟 𑀠𑀢त𑀫च𑁦ल 𑁣ब𑀢𑀣𑀢 𑀝च𑀟 𑀫च𑀢𑀲𑁦𑀳𑀫𑀢 𑀪च𑀟च𑀪 𑀗 बच 𑀱चपच𑀟 𑀣𑀢𑀳च𑀠ढच𑀦 𑀭थ𑀖थ𑀮𑀯
  - ' 𑀱च𑀟𑀟च𑀟 णच𑀟च पच𑀢𑀠च𑀞च 𑀱च झ𑀱च𑀪च𑀪𑀪न𑀟 𑀫𑀪 𑀳न त𑀢 बचढच 𑀣च लन𑀪च 𑀣च 𑀣न𑀞 ढनञचञञ𑁦𑀟 चणणन𑀞च𑀟𑀳न
    𑀣च 𑀠च𑀳न 𑀟𑁦𑀠च पच 𑀫च𑀟णच𑀪 𑀣च पच 𑀲𑀢 𑀳चन𑀪𑀢 𑀣च 𑀳चनझ𑀢 𑀲𑀢ण𑁦 𑀣च 𑀣च𑀯'
  - ' च 𑀞च𑀪𑀞च𑀳𑀫𑀢𑀟 𑀣𑁣𑀞च𑀪𑀦 𑀠च𑀘चल𑀢𑀳च𑀪 लचनण𑁣ण𑀢𑀟 𑀢𑀟𑀣𑀢णच 𑀢पच त𑁦 ढचढढच𑀪 𑀫न𑀞न𑀠च𑀪 𑀞नलच 𑀣च 𑀫च𑀪𑀞𑁣𑀞𑀢𑀟
    𑀳𑀫च𑀪𑀢𑀙च च 𑀢𑀟𑀣𑀢णच 𑀣च 𑀞न𑀠च पचढढचपच𑀪 𑀣च ढ𑀢𑀟 𑀣𑁣𑀞च 𑀣च 𑀞𑀢णचण𑁦 𑀞च𑀙𑀢𑀣𑁣𑀘𑀢𑀟 𑀞𑀱च𑀪च𑀪𑀪न पच
    𑀫च𑀟णच𑀪 𑀞𑀱च𑀪च𑀪𑀪न𑀟 लचनणच च 𑀞च𑀳च𑀪𑀯'
- source_sentence: 𑀣नढच ढढत𑀕 𑀠च𑀠च𑀪 चलचप𑁣न𑀠𑀢
  sentences:
  - 𑀣नढच 𑀞न𑀠च  𑀣𑁦𑀟𑀞ष𑀣𑁦𑀟𑀞𑀠च𑀟च𑀤च𑀪पच  ढढत𑀕 𑀠च𑀠च𑀪 𑀞च𑀳𑀳𑁦ण चलचप𑁣न𑀠𑀢 𑀯
  - '  च𑀟 𑀲च𑀪च 𑀳च𑀠च𑀪𑀱च 𑀞न𑀠च 𑀣चबच ढचणच च𑀟 𑀲च𑀣च𑀣च चणणन𑀞च𑀟 बच 𑀳चन𑀪च𑀟 𑀢णचलच𑀢 𑀟च 𑀟च𑀘𑁦𑀪𑀢णच
    𑀠च𑀳न णच𑀪च𑀯'
  - '    𑀫च𑁥च𑀞च च𑀤चढपच𑀪𑀱च णच𑀟च 𑀣च 𑀱च𑀫चलच 𑀠न𑀳च𑀠𑀠च𑀟 च त𑀢𑀞𑀢𑀟 चणणन𑀞च𑀟 णचझ𑀢 𑀣च पच𑀱चबच𑀪𑀯'
- source_sentence: च𑀟
  sentences:
  - 𑀠नपन𑀱च  𑀪च𑀟च𑀪  बच 𑀱चपच𑀟 𑀠चणन𑀟 ठ𑀧𑀧ठ𑀦 च𑀞न 𑀟च त𑀢𑀞𑀢𑀟 𑀲च𑀳𑀢𑀟𑀘𑁣𑀘𑀢 𑀬𑀧 𑀣च 𑀞𑁦 त𑀢𑀞𑀢𑀟 𑀱च𑀟𑀢
    𑀘𑀢𑀪ब𑀢𑀟 𑀣च णच ण𑀢 𑀫चप𑀳च𑀪𑀢𑀟 𑀠𑀢𑀟पन𑀟च 𑀞चञच𑀟 ढचणच𑀟 पच𑀳𑀫𑀢𑀟𑀳च  𑀞च𑀟𑁣𑀯
  - '  च𑀟 ण𑀢 𑀢𑀠च𑀟𑀢𑀟 𑀳𑀯'
  - ' 𑀲च𑀫च𑀣 णच 𑀞च𑀠𑀠चलच 𑀞च𑀞च𑀪 ठ𑀧𑀭ठट𑀭𑀰 𑀣च 𑀞𑀱चललचण𑁦 𑀭𑀧 𑀠च𑀳न ढच𑀟 𑀳𑀫च𑀙च𑀱च च 𑀱च𑀳च𑀟𑀟𑀢 ठ𑁢
    च 𑀣न𑀞 बच𑀳च𑀯'
- source_sentence: ब𑀫𑁣𑀳प 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀢𑀠च𑀞𑁣𑀟 𑀣च 𑀲च𑀳चलनललन𑀞च णच𑀟च ढच
    𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟
  sentences:
  - च𑀠𑀢𑀟पचतत𑀢णच  त𑀢𑀞𑀢𑀟 ब𑀫𑁣𑀳प 𑀳𑁦𑀪𑀢𑁦𑀳 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀪𑁦 𑀣च ञ𑀢𑀠ढ𑀢𑀟 𑀢𑀟बच𑀟पचपपन𑀟
    प𑀳च𑀪𑀢𑀟 पच𑀢𑀠च𑀞𑁣𑀟 𑀣𑀢𑀪𑁦ढच 𑀣च 𑀲च𑀳चलनललन𑀞च 𑀟च च𑀠𑀢𑀟त𑀢𑀦 णच𑀟च ढच 𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀞𑀱च𑀟त𑀢णच𑀪
    𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟 पच𑀲𑀢णच𑀪𑀳न𑀯
  - प𑁣ध𑀳ण ध𑀫𑀢𑀪𑀢 𑀝च𑀟 𑀫च𑀢𑀲𑁦 𑀳𑀫𑀢  𑀪च𑀟च𑀪 𑀭𑀭 बच 𑀱चपच𑀟 चबन𑀳पच 𑀭थ𑀗𑀧𑀮 ञच𑀟 𑀱च𑀳च𑀟 ढच𑀣𑀠𑀢𑀟प𑁣𑀟
    ञच𑀟 𑀤च𑀠ढ𑀢च 𑀟𑁦𑀯
  - पचबबच𑀲च𑀣𑀢 𑀠चप𑀳नबन𑀟𑀢𑀟 𑀠नपच𑀟𑁦 𑀟𑁦  𑀳च𑀳𑀫𑁦𑀟 च𑀪ल𑀢प 𑀣च𑀞𑁦 णच𑀟𑀞𑀢𑀟 चबच𑀣𑁦𑀤  च𑀪𑁦𑀱च पच प𑀳च𑀞𑀢णच𑀪
    𑀟𑀢𑀘च𑀪𑀯
---

# SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision bf3bf13ab40c3157080a7ab344c831b9ad18b5eb -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_MiniLM_L12_2")
# Run inference
sentences = [
    'ब𑀫𑁣𑀳प 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀢𑀠च𑀞𑁣𑀟 𑀣च 𑀲च𑀳चलनललन𑀞च णच𑀟च ढच 𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟',
    'च𑀠𑀢𑀟पचतत𑀢णच च त𑀢𑀞𑀢𑀟 ब𑀫𑁣𑀳प 𑀳𑁦𑀪𑀢𑁦𑀳 𑀢𑀢 𑀳𑀫𑀢𑀟𑁦 𑀠च𑀲𑀢 𑀠च𑀫𑀢𑀠𑀠च𑀟त𑀢𑀦 पच𑀪𑁦 𑀣च ञ𑀢𑀠ढ𑀢𑀟 𑀢𑀟बच𑀟पचपपन𑀟 प𑀳च𑀪𑀢𑀟 पच𑀢𑀠च𑀞𑁣𑀟 𑀣𑀢𑀪𑁦ढच 𑀣च 𑀲च𑀳चलनललन𑀞च 𑀟च च𑀠𑀢𑀟त𑀢𑀦 णच𑀟च ढच 𑀠च𑀤चन𑀟च त𑀢𑀞𑀢𑀟 𑀞𑀱च𑀟त𑀢णच𑀪 𑀫च𑀟𑀞चल𑀢 णचण𑀢𑀟 पच𑀲𑀢णच𑀪𑀳न𑀯',
    'प𑁣ध𑀳ण ध𑀫𑀢𑀪𑀢 𑀝च𑀟 𑀫च𑀢𑀲𑁦 𑀳𑀫𑀢 च 𑀪च𑀟च𑀪 𑀭𑀭 बच 𑀱चपच𑀟 चबन𑀳पच 𑀭थ𑀗𑀧𑀮 ञच𑀟 𑀱च𑀳च𑀟 ढच𑀣𑀠𑀢𑀟प𑁣𑀟 ञच𑀟 𑀤च𑀠ढ𑀢च 𑀟𑁦𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 64,000 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                         | sentence_1                                                                         |
  |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                             |
  | details | <ul><li>min: 4 tokens</li><li>mean: 37.72 tokens</li><li>max: 292 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 90.07 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
  | sentence_0                                         | sentence_1                                                                                                                        |
  |:---------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------|
  | <code>𑀞न𑀣न ढ𑀢𑀪𑀟𑀢𑀟𑀦𑀞न𑀳च प𑁦𑀞न𑀟</code>                | <code>प𑁦𑀞न𑀟 पचबच णच𑀟च 𑀞न𑀣न 𑀣च ढ𑀢𑀪𑀟𑀢𑀟𑀦𑀞न𑀳च 𑀣च प𑁦𑀞न𑀟 पचत𑀫𑁣बच𑀯</code>                                                                |
  | <code>च त𑀢ढ𑀢ण𑁣ण𑀢𑀟 𑀳च𑀣च𑀪𑀱च𑀪 𑀳न झच𑀪च 𑀠चप𑀳चण𑀢𑀟</code> | <code>चढ𑁣𑀞च𑀢𑀞च𑀠च𑀪 च णच𑀱च𑀟त𑀢𑀟 त𑀢ढ𑀢ण𑁣ण𑀢𑀟 𑀳च𑀣च𑀪𑀱च𑀪 𑀘च𑀠च𑀙च𑀦 𑀠च𑀳न च𑀠𑀲च𑀟𑀢 𑀤च 𑀳न 𑀢णच झच𑀪च 𑀠नपच𑀟𑁦 च 𑀠चप𑀳चण𑀢𑀟 चढ𑁣𑀞च𑀟𑀳न𑀯</code>             |
  | <code>𑀣च बन𑀣न𑀠𑀠च𑀱च 𑀘च𑀪𑀢𑀣न𑀟 𑀠न𑀘चललन पच 𑀯</code>     | <code>   पच ढच 𑀣च बन𑀣न𑀠𑀠च𑀱च बच 𑀘च𑀪𑀢𑀣न𑀟 च𑀟च𑀪त𑀫𑀢𑀳प 𑀣चढच𑀟ष𑀣चढच𑀟 𑀣च 𑀠न𑀘चललन 𑀠च𑀳न चलचझच 𑀣च झन𑀟ब𑀢णच𑀪 𑀠च𑀙च𑀢𑀞चपच 𑀙णच𑀟त𑀢 पच 𑀘च𑀠न𑀳 𑀯</code> |
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch | Step  | Training Loss |
|:-----:|:-----:|:-------------:|
| 0.125 | 500   | 2.5392        |
| 0.25  | 1000  | 1.4129        |
| 0.375 | 1500  | 1.3383        |
| 0.5   | 2000  | 1.288         |
| 0.625 | 2500  | 1.2627        |
| 0.75  | 3000  | 1.239         |
| 0.875 | 3500  | 1.2208        |
| 1.0   | 4000  | 1.2041        |
| 1.125 | 4500  | 1.1743        |
| 1.25  | 5000  | 1.1633        |
| 1.375 | 5500  | 1.1526        |
| 1.5   | 6000  | 1.1375        |
| 1.625 | 6500  | 1.1313        |
| 1.75  | 7000  | 1.1246        |
| 1.875 | 7500  | 1.1162        |
| 2.0   | 8000  | 1.1096        |
| 2.125 | 8500  | 1.0876        |
| 2.25  | 9000  | 1.0839        |
| 2.375 | 9500  | 1.0791        |
| 2.5   | 10000 | 1.0697        |
| 2.625 | 10500 | 1.0671        |
| 2.75  | 11000 | 1.0644        |
| 2.875 | 11500 | 1.0579        |
| 3.0   | 12000 | 1.0528        |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### DenoisingAutoEncoderLoss
```bibtex
@inproceedings{wang-2021-TSDAE,
    title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
    author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", 
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
    month = nov,
    year = "2021",
    address = "Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    pages = "671--688",
    url = "https://arxiv.org/abs/2104.06979",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->