|
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import math
|
|
from dataclasses import dataclass
|
|
from transformers import PreTrainedModel, PretrainedConfig
|
|
from einops import rearrange, repeat
|
|
from functools import partial
|
|
from typing import Optional, Tuple
|
|
from transformers.modeling_outputs import ModelOutput
|
|
|
|
|
|
class ESMplusplusConfig(PretrainedConfig):
|
|
model_type = "ESMplusplus"
|
|
def __init__(
|
|
self,
|
|
vocab_size: int = 64,
|
|
hidden_size: int = 960,
|
|
num_attention_heads: int = 15,
|
|
num_hidden_layers: int = 30,
|
|
num_labels: int = 2,
|
|
problem_type: str | None = None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_attention_heads = num_attention_heads
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_labels = num_labels
|
|
self.problem_type = problem_type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x, interleaved=False):
|
|
if not interleaved:
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
else:
|
|
x1, x2 = x[..., ::2], x[..., 1::2]
|
|
return rearrange(
|
|
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
|
|
)
|
|
|
|
|
|
def apply_rotary_emb_torch(x, cos, sin, interleaved=False, _inplace=False):
|
|
"""
|
|
x: (batch_size, seqlen, nheads, headdim)
|
|
cos, sin: (seqlen, rotary_dim / 2)
|
|
"""
|
|
ro_dim = cos.shape[-1] * 2
|
|
assert ro_dim <= x.shape[-1]
|
|
seqlen = x.size(1)
|
|
cos = cos[:seqlen]
|
|
sin = sin[:seqlen]
|
|
cos = repeat(cos, "s d -> s 1 (2 d)")
|
|
sin = repeat(sin, "s d -> s 1 (2 d)")
|
|
return torch.cat(
|
|
[
|
|
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
|
|
x[..., ro_dim:],
|
|
],
|
|
dim=-1,
|
|
)
|
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
base=10000.0,
|
|
interleaved=False,
|
|
scale_base=None,
|
|
scaling_factor=1.0,
|
|
pos_idx_in_fp32=True,
|
|
device=None,
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.base = float(base)
|
|
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
|
|
|
self.interleaved = interleaved
|
|
self.scale_base = scale_base
|
|
self.scaling_factor = scaling_factor
|
|
self.device = device
|
|
|
|
self._seq_len_cached = 0
|
|
self._cos_cached = None
|
|
self._sin_cached = None
|
|
self._cos_k_cached = None
|
|
self._sin_k_cached = None
|
|
self.reset_parameters()
|
|
|
|
def reset_parameters(self):
|
|
inv_freq = self._compute_inv_freq(self.device)
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
|
|
scale = (
|
|
(arange + 0.4 * self.dim) / (1.4 * self.dim)
|
|
if self.scale_base is not None
|
|
else None
|
|
)
|
|
self.register_buffer("scale", scale)
|
|
|
|
def _compute_inv_freq(self, device=None):
|
|
return 1 / (
|
|
self.base
|
|
** (
|
|
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
|
|
/ self.dim
|
|
)
|
|
)
|
|
|
|
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
|
if (
|
|
seqlen > self._seq_len_cached
|
|
or self._cos_cached is None
|
|
or self._cos_cached.device != device
|
|
or self._cos_cached.dtype != dtype
|
|
or (self.training and self._cos_cached.is_inference())
|
|
):
|
|
self._seq_len_cached = seqlen
|
|
if self.pos_idx_in_fp32:
|
|
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
|
t /= self.scaling_factor
|
|
if self.inv_freq.dtype != torch.float32:
|
|
inv_freq = self.inv_freq.to(torch.float32)
|
|
else:
|
|
inv_freq = self.inv_freq
|
|
else:
|
|
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
|
t /= self.scaling_factor
|
|
inv_freq = self.inv_freq
|
|
freqs = torch.outer(t, inv_freq)
|
|
|
|
if self.scale is None:
|
|
self._cos_cached = torch.cos(freqs).to(dtype)
|
|
self._sin_cached = torch.sin(freqs).to(dtype)
|
|
else:
|
|
power = (
|
|
torch.arange(
|
|
seqlen, dtype=self.scale.dtype, device=self.scale.device
|
|
)
|
|
- seqlen // 2
|
|
) / self.scale_base
|
|
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
|
|
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
|
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
|
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
|
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
|
|
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
q: (batch, seqlen, nheads, headdim)
|
|
k: (batch, seqlen, nheads, headdim)
|
|
"""
|
|
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
|
|
assert self._cos_cached is not None
|
|
assert self._sin_cached is not None
|
|
if self.scale is None:
|
|
return (
|
|
apply_rotary_emb_torch(
|
|
q,
|
|
self._cos_cached,
|
|
self._sin_cached,
|
|
self.interleaved,
|
|
True,
|
|
),
|
|
apply_rotary_emb_torch(
|
|
k,
|
|
self._cos_cached,
|
|
self._sin_cached,
|
|
self.interleaved,
|
|
True,
|
|
),
|
|
)
|
|
else:
|
|
assert False
|
|
|
|
|
|
|
|
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
|
|
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
|
|
|
|
|
|
class SwiGLU(nn.Module):
|
|
def __init__(self):
|
|
super(SwiGLU, self).__init__()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x1, x2 = x.chunk(2, dim=-1)
|
|
return F.silu(x1) * x2
|
|
|
|
|
|
def swiglu_ln_ffn(d_model: int, expansion_ratio: float):
|
|
return nn.Sequential(
|
|
nn.LayerNorm(d_model),
|
|
nn.Linear(
|
|
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
|
|
),
|
|
SwiGLU(),
|
|
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
|
|
)
|
|
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, d_model: int, n_heads: int):
|
|
super().__init__()
|
|
self.d_model = d_model
|
|
self.n_heads = n_heads
|
|
self.d_head = self.d_model // self.n_heads
|
|
self.layernorm_qkv = nn.Sequential(
|
|
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
|
|
)
|
|
self.out_proj = nn.Linear(d_model, d_model, bias=False)
|
|
self.q_ln = nn.LayerNorm(d_model, bias=False)
|
|
self.k_ln = nn.LayerNorm(d_model, bias=False)
|
|
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
|
|
self.rotary = RotaryEmbedding(d_model // n_heads)
|
|
|
|
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor):
|
|
q = q.unflatten(-1, (self.n_heads, self.d_head))
|
|
k = k.unflatten(-1, (self.n_heads, self.d_head))
|
|
q, k = self.rotary(q, k)
|
|
q = q.flatten(-2, -1)
|
|
k = k.flatten(-2, -1)
|
|
return q, k
|
|
|
|
def forward(self, x, attention_mask=None):
|
|
qkv_BLD3 = self.layernorm_qkv(x)
|
|
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
|
|
query_BLD, key_BLD = (
|
|
self.q_ln(query_BLD).to(query_BLD.dtype),
|
|
self.k_ln(key_BLD).to(query_BLD.dtype),
|
|
)
|
|
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
|
|
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
|
|
context_BHLD = F.scaled_dot_product_attention(
|
|
query_BHLD, key_BHLD, value_BHLD, attention_mask
|
|
)
|
|
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
|
|
return self.out_proj(context_BLD)
|
|
|
|
|
|
|
|
def RegressionHead(
|
|
d_model: int, output_dim: int, hidden_dim: int | None = None
|
|
) -> nn.Module:
|
|
hidden_dim = hidden_dim if hidden_dim is not None else d_model
|
|
return nn.Sequential(
|
|
nn.Linear(d_model, hidden_dim),
|
|
nn.GELU(),
|
|
nn.LayerNorm(hidden_dim),
|
|
nn.Linear(hidden_dim, output_dim),
|
|
)
|
|
|
|
|
|
|
|
class UnifiedTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
n_heads: int,
|
|
residue_scaling_factor: float = 1,
|
|
expansion_ratio: float = 8 / 3,
|
|
):
|
|
super().__init__()
|
|
self.attn = MultiHeadAttention(d_model, n_heads)
|
|
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
|
|
self.scaling_factor = residue_scaling_factor
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
r1 = self.attn(x, attention_mask)
|
|
x = x + r1 / self.scaling_factor
|
|
r3 = self.ffn(x) / self.scaling_factor
|
|
x = x + r3
|
|
return x
|
|
|
|
|
|
|
|
@dataclass
|
|
class TransformerOutput(ModelOutput):
|
|
last_hidden_state: torch.Tensor | None = None
|
|
hidden_states: tuple[torch.Tensor] | None = None
|
|
|
|
|
|
@dataclass
|
|
class ESMplusplusOutput(ModelOutput):
|
|
loss: torch.Tensor | None = None
|
|
logits: torch.Tensor | None = None
|
|
last_hidden_state: torch.Tensor | None = None
|
|
hidden_states: tuple[torch.Tensor] | None = None
|
|
|
|
|
|
|
|
class TransformerStack(nn.Module):
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
n_heads: int,
|
|
n_layers: int,
|
|
):
|
|
super().__init__()
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
UnifiedTransformerBlock(
|
|
d_model,
|
|
n_heads,
|
|
residue_scaling_factor=math.sqrt(n_layers / 36),
|
|
)
|
|
for i in range(n_layers)
|
|
]
|
|
)
|
|
self.norm = nn.LayerNorm(d_model, bias=False)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
output_hidden_states: bool = False,
|
|
) -> TransformerOutput:
|
|
batch_size, seq_len, _ = x.shape
|
|
hidden_states = ()
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
|
|
for block in self.blocks:
|
|
x = block(x, attention_mask)
|
|
if output_hidden_states:
|
|
hidden_states += (x,)
|
|
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
|
|
|
|
|
|
|
|
class ESMplusplusForMaskedLM(PreTrainedModel):
|
|
"""
|
|
ESM++ for masked language modeling.
|
|
"""
|
|
config_class = ESMplusplusConfig
|
|
def __init__(self, config: ESMplusplusConfig):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
|
|
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers)
|
|
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
|
|
self.ce_loss = nn.CrossEntropyLoss()
|
|
self.tokenizer = EsmSequenceTokenizer()
|
|
|
|
@classmethod
|
|
def from_pretrained_esm(cls, model_name: str):
|
|
if '300' in model_name:
|
|
return ESMplusplus_300M()
|
|
elif '600' in model_name:
|
|
return ESMplusplus_600M()
|
|
else:
|
|
raise ValueError(f"Invalid model name: {model_name}")
|
|
|
|
@property
|
|
def device(self):
|
|
return next(self.parameters()).device
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_hidden_states: bool = False,
|
|
) -> ESMplusplusOutput:
|
|
x = self.embed(input_ids)
|
|
output = self.transformer(x, attention_mask, output_hidden_states)
|
|
x = output.last_hidden_state
|
|
logits = self.sequence_head(x)
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
|
|
return ESMplusplusOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
last_hidden_state=x,
|
|
hidden_states=output.hidden_states,
|
|
)
|
|
|
|
|
|
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
|
|
"""
|
|
ESM++ for sequence classification.
|
|
"""
|
|
def __init__(self, config: ESMplusplusConfig):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
|
|
|
|
self.mse = nn.MSELoss()
|
|
self.ce = nn.CrossEntropyLoss()
|
|
self.bce = nn.BCEWithLogitsLoss()
|
|
|
|
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
|
|
|
|
if attention_mask is None:
|
|
return x.mean(dim=1)
|
|
else:
|
|
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_hidden_states: bool = False,
|
|
) -> ESMplusplusOutput:
|
|
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
|
x = output.last_hidden_state
|
|
cls_features = x[:, 0, :]
|
|
mean_features = self.mean_pooling(x, attention_mask)
|
|
|
|
features = torch.cat([cls_features, mean_features], dim=-1)
|
|
logits = self.classifier(features)
|
|
loss = None
|
|
if labels is not None:
|
|
labels = labels.to(logits.device)
|
|
if self.config.problem_type is None:
|
|
if self.num_labels == 1:
|
|
self.config.problem_type = "regression"
|
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
|
self.config.problem_type = "single_label_classification"
|
|
else:
|
|
self.config.problem_type = "multi_label_classification"
|
|
|
|
if self.config.problem_type == "regression":
|
|
if self.num_labels == 1:
|
|
loss = self.mse(logits.squeeze(), labels.squeeze())
|
|
else:
|
|
loss = self.mse(logits, labels)
|
|
elif self.config.problem_type == "single_label_classification":
|
|
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
|
|
elif self.config.problem_type == "multi_label_classification":
|
|
loss = self.bce(logits, labels)
|
|
return ESMplusplusOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
last_hidden_state=x,
|
|
hidden_states=output.hidden_states,
|
|
)
|
|
|
|
|
|
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
|
|
"""
|
|
ESM++ for token classification.
|
|
"""
|
|
def __init__(self, config: ESMplusplusConfig):
|
|
super().__init__(config)
|
|
self.config = config
|
|
self.num_labels = config.num_labels
|
|
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
|
|
|
|
self.loss_fct = nn.CrossEntropyLoss()
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor | None = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
output_hidden_states: bool = False,
|
|
) -> ESMplusplusOutput:
|
|
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
|
|
x = output.last_hidden_state
|
|
logits = self.classifier(x)
|
|
loss = None
|
|
if labels is not None:
|
|
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
return ESMplusplusOutput(
|
|
loss=loss,
|
|
logits=logits,
|
|
last_hidden_state=x,
|
|
hidden_states=output.hidden_states,
|
|
)
|
|
|
|
|
|
|
|
import os
|
|
from functools import cache
|
|
from pathlib import Path
|
|
from huggingface_hub import snapshot_download
|
|
|
|
|
|
@staticmethod
|
|
@cache
|
|
def data_root(model: str):
|
|
if "INFRA_PROVIDER" in os.environ:
|
|
return Path("")
|
|
|
|
if model.startswith("esmc-300"):
|
|
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
|
|
elif model.startswith("esmc-600"):
|
|
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
|
|
else:
|
|
raise ValueError(f"{model=} is an invalid model name.")
|
|
return path
|
|
|
|
|
|
def ESMplusplus_300M(device: torch.device | str = "cpu"):
|
|
with torch.device(device):
|
|
config = ESMplusplusConfig(
|
|
hidden_size=960,
|
|
num_attention_heads=15,
|
|
num_hidden_layers=30,
|
|
)
|
|
model = ESMplusplusForMaskedLM(config)
|
|
state_dict = torch.load(
|
|
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
|
|
map_location=device,
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
return model
|
|
|
|
|
|
def ESMplusplus_600M(device: torch.device | str = "cpu"):
|
|
with torch.device(device):
|
|
config = ESMplusplusConfig(
|
|
hidden_size=1152,
|
|
num_attention_heads=18,
|
|
num_hidden_layers=36,
|
|
)
|
|
model = ESMplusplusForMaskedLM(config)
|
|
state_dict = torch.load(
|
|
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
|
|
map_location=device,
|
|
)
|
|
model.load_state_dict(state_dict)
|
|
return model
|
|
|
|
|
|
|
|
from tokenizers import Tokenizer
|
|
from tokenizers.models import BPE
|
|
from tokenizers.processors import TemplateProcessing
|
|
from transformers import PreTrainedTokenizerFast
|
|
|
|
|
|
SEQUENCE_VOCAB = [
|
|
"<cls>", "<pad>", "<eos>", "<unk>",
|
|
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
|
|
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
|
|
"O", ".", "-", "|",
|
|
"<mask>",
|
|
]
|
|
|
|
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
|
|
model_input_names = ["input_ids", "attention_mask"]
|
|
|
|
def __init__(
|
|
self,
|
|
unk_token="<unk>",
|
|
cls_token="<cls>",
|
|
pad_token="<pad>",
|
|
mask_token="<mask>",
|
|
eos_token="<eos>",
|
|
chain_break_token="|",
|
|
**kwargs,
|
|
):
|
|
all_tokens = SEQUENCE_VOCAB
|
|
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
|
|
|
|
|
|
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
|
|
tokenizer = Tokenizer(bpe)
|
|
special_tokens = [
|
|
cls_token,
|
|
pad_token,
|
|
mask_token,
|
|
eos_token,
|
|
chain_break_token,
|
|
]
|
|
self.cb_token = chain_break_token
|
|
additional_special_tokens = [chain_break_token]
|
|
|
|
tokenizer.add_special_tokens(special_tokens)
|
|
|
|
|
|
|
|
|
|
tokenizer.post_processor = TemplateProcessing(
|
|
single="<cls> $A <eos>",
|
|
special_tokens=[
|
|
("<cls>", tokenizer.token_to_id("<cls>")),
|
|
("<eos>", tokenizer.token_to_id("<eos>")),
|
|
],
|
|
)
|
|
super().__init__(
|
|
tokenizer_object=tokenizer,
|
|
unk_token=unk_token,
|
|
cls_token=cls_token,
|
|
pad_token=pad_token,
|
|
mask_token=mask_token,
|
|
eos_token=eos_token,
|
|
additional_special_tokens=additional_special_tokens,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@property
|
|
def bos_token(self):
|
|
return self.cls_token
|
|
|
|
@property
|
|
def bos_token_id(self):
|
|
return self.cls_token_id
|
|
|
|
@property
|
|
def chain_break_token(self):
|
|
return self.cb_token
|
|
|
|
@property
|
|
def chain_break_token_id(self):
|
|
return self.convert_tokens_to_ids(self.chain_break_token)
|
|
|
|
@property
|
|
def all_token_ids(self):
|
|
return list(range(self.vocab_size))
|
|
|
|
@property
|
|
def special_token_ids(self):
|
|
return self.all_special_ids
|
|
|