File size: 21,976 Bytes
9117f48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 |
### Modified from https://github.com/evolutionaryscale/esm
### License: https://www.evolutionaryscale.ai/policies/cambrian-non-commercial-license-agreement
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from dataclasses import dataclass
from transformers import PreTrainedModel, PretrainedConfig
from einops import rearrange, repeat
from functools import partial
from typing import Optional, Tuple
from transformers.modeling_outputs import ModelOutput
class ESMplusplusConfig(PretrainedConfig):
model_type = "ESMplusplus"
def __init__(
self,
vocab_size: int = 64,
hidden_size: int = 960,
num_attention_heads: int = 15,
num_hidden_layers: int = 30,
num_labels: int = 2,
problem_type: str | None = None,
**kwargs,
):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_labels = num_labels
self.problem_type = problem_type
### Rotary
# https://github.com/evolutionaryscale/esm/blob/main/esm/layers/rotary.py
# https://huggingface.co/togethercomputer/LLaMA-2-7B-32K/blob/08639a72e17836184096ae6a7e2766f2a34c3e36/modeling_flash_llama.py#L114
# Flash attention rotary implementation can be installed like so: `pip install git+https://github.com/HazyResearch/flash-attention.git#subdirectory=csrc/rotary`
def rotate_half(x, interleaved=False):
if not interleaved:
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
else:
x1, x2 = x[..., ::2], x[..., 1::2]
return rearrange(
torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2
)
def apply_rotary_emb_torch(x, cos, sin, interleaved=False, _inplace=False):
"""
x: (batch_size, seqlen, nheads, headdim)
cos, sin: (seqlen, rotary_dim / 2)
"""
ro_dim = cos.shape[-1] * 2
assert ro_dim <= x.shape[-1]
seqlen = x.size(1)
cos = cos[:seqlen]
sin = sin[:seqlen]
cos = repeat(cos, "s d -> s 1 (2 d)")
sin = repeat(sin, "s d -> s 1 (2 d)")
return torch.cat(
[
x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin,
x[..., ro_dim:],
],
dim=-1,
)
class RotaryEmbedding(torch.nn.Module):
def __init__(
self,
dim: int,
base=10000.0,
interleaved=False,
scale_base=None,
scaling_factor=1.0,
pos_idx_in_fp32=True,
device=None,
):
super().__init__()
self.dim = dim
self.base = float(base)
self.pos_idx_in_fp32 = pos_idx_in_fp32
# Generate and save the inverse frequency buffer (non trainable)
self.interleaved = interleaved
self.scale_base = scale_base
self.scaling_factor = scaling_factor
self.device = device
self._seq_len_cached = 0
self._cos_cached = None
self._sin_cached = None
self._cos_k_cached = None
self._sin_k_cached = None
self.reset_parameters()
def reset_parameters(self):
inv_freq = self._compute_inv_freq(self.device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
arange = torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32)
scale = (
(arange + 0.4 * self.dim) / (1.4 * self.dim)
if self.scale_base is not None
else None
)
self.register_buffer("scale", scale)
def _compute_inv_freq(self, device=None):
return 1 / (
self.base
** (
torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
/ self.dim
)
)
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
if (
seqlen > self._seq_len_cached
or self._cos_cached is None
or self._cos_cached.device != device
or self._cos_cached.dtype != dtype
or (self.training and self._cos_cached.is_inference())
):
self._seq_len_cached = seqlen
if self.pos_idx_in_fp32:
t = torch.arange(seqlen, device=device, dtype=torch.float32)
t /= self.scaling_factor
if self.inv_freq.dtype != torch.float32:
inv_freq = self.inv_freq.to(torch.float32)
else:
inv_freq = self.inv_freq
else:
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
t /= self.scaling_factor
inv_freq = self.inv_freq
freqs = torch.outer(t, inv_freq)
if self.scale is None:
self._cos_cached = torch.cos(freqs).to(dtype)
self._sin_cached = torch.sin(freqs).to(dtype)
else:
power = (
torch.arange(
seqlen, dtype=self.scale.dtype, device=self.scale.device
)
- seqlen // 2
) / self.scale_base
scale = self.scale.to(device=power.device) ** power.unsqueeze(-1)
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
q: (batch, seqlen, nheads, headdim)
k: (batch, seqlen, nheads, headdim)
"""
self._update_cos_sin_cache(q.shape[1], device=q.device, dtype=q.dtype)
assert self._cos_cached is not None
assert self._sin_cached is not None
if self.scale is None:
return (
apply_rotary_emb_torch(
q,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
apply_rotary_emb_torch(
k,
self._cos_cached,
self._sin_cached,
self.interleaved,
True, # inplace=True
),
) # type: ignore
else:
assert False
### Feedforward
def swiglu_correction_fn(expansion_ratio: float, d_model: int) -> int:
return int(((expansion_ratio * d_model) + 255) // 256 * 256)
class SwiGLU(nn.Module):
def __init__(self):
super(SwiGLU, self).__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(2, dim=-1)
return F.silu(x1) * x2
def swiglu_ln_ffn(d_model: int, expansion_ratio: float):
return nn.Sequential(
nn.LayerNorm(d_model),
nn.Linear(
d_model, swiglu_correction_fn(expansion_ratio, d_model) * 2, bias=False
),
SwiGLU(),
nn.Linear(swiglu_correction_fn(expansion_ratio, d_model), d_model, bias=False),
)
### Attention
class MultiHeadAttention(nn.Module):
def __init__(self, d_model: int, n_heads: int):
super().__init__()
self.d_model = d_model
self.n_heads = n_heads
self.d_head = self.d_model // self.n_heads
self.layernorm_qkv = nn.Sequential(
nn.LayerNorm(d_model), nn.Linear(d_model, d_model * 3, bias=False)
)
self.out_proj = nn.Linear(d_model, d_model, bias=False)
self.q_ln = nn.LayerNorm(d_model, bias=False)
self.k_ln = nn.LayerNorm(d_model, bias=False)
self.reshaper = partial(rearrange, pattern="b s (h d) -> b h s d", h=n_heads)
self.rotary = RotaryEmbedding(d_model // n_heads)
def _apply_rotary(self, q: torch.Tensor, k: torch.Tensor):
q = q.unflatten(-1, (self.n_heads, self.d_head))
k = k.unflatten(-1, (self.n_heads, self.d_head))
q, k = self.rotary(q, k)
q = q.flatten(-2, -1)
k = k.flatten(-2, -1)
return q, k
def forward(self, x, attention_mask=None):
qkv_BLD3 = self.layernorm_qkv(x)
query_BLD, key_BLD, value_BLD = torch.chunk(qkv_BLD3, 3, dim=-1)
query_BLD, key_BLD = (
self.q_ln(query_BLD).to(query_BLD.dtype),
self.k_ln(key_BLD).to(query_BLD.dtype),
)
query_BLD, key_BLD = self._apply_rotary(query_BLD, key_BLD)
query_BHLD, key_BHLD, value_BHLD = map(self.reshaper, (query_BLD, key_BLD, value_BLD))
context_BHLD = F.scaled_dot_product_attention(
query_BHLD, key_BHLD, value_BHLD, attention_mask
)
context_BLD = rearrange(context_BHLD, "b h s d -> b s (h d)")
return self.out_proj(context_BLD)
### LM Head
def RegressionHead(
d_model: int, output_dim: int, hidden_dim: int | None = None
) -> nn.Module:
hidden_dim = hidden_dim if hidden_dim is not None else d_model
return nn.Sequential(
nn.Linear(d_model, hidden_dim),
nn.GELU(),
nn.LayerNorm(hidden_dim),
nn.Linear(hidden_dim, output_dim),
)
### Transformer Block
class UnifiedTransformerBlock(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
residue_scaling_factor: float = 1,
expansion_ratio: float = 8 / 3,
):
super().__init__()
self.attn = MultiHeadAttention(d_model, n_heads)
self.ffn = swiglu_ln_ffn(d_model, expansion_ratio)
self.scaling_factor = residue_scaling_factor
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r1 = self.attn(x, attention_mask)
x = x + r1 / self.scaling_factor
r3 = self.ffn(x) / self.scaling_factor
x = x + r3
return x
### Outputs
@dataclass
class TransformerOutput(ModelOutput):
last_hidden_state: torch.Tensor | None = None
hidden_states: tuple[torch.Tensor] | None = None
@dataclass
class ESMplusplusOutput(ModelOutput):
loss: torch.Tensor | None = None
logits: torch.Tensor | None = None
last_hidden_state: torch.Tensor | None = None
hidden_states: tuple[torch.Tensor] | None = None
### Transformer
class TransformerStack(nn.Module):
def __init__(
self,
d_model: int,
n_heads: int,
n_layers: int,
):
super().__init__()
self.blocks = nn.ModuleList(
[
UnifiedTransformerBlock(
d_model,
n_heads,
residue_scaling_factor=math.sqrt(n_layers / 36),
)
for i in range(n_layers)
]
)
self.norm = nn.LayerNorm(d_model, bias=False)
def forward(
self,
x: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> TransformerOutput:
batch_size, seq_len, _ = x.shape
hidden_states = ()
if attention_mask is not None:
attention_mask = attention_mask[:, None, None, :].expand(batch_size, 1, seq_len, seq_len).bool()
for block in self.blocks:
x = block(x, attention_mask)
if output_hidden_states:
hidden_states += (x,)
return TransformerOutput(last_hidden_state=self.norm(x), hidden_states=hidden_states)
### Full model
class ESMplusplusForMaskedLM(PreTrainedModel):
"""
ESM++ for masked language modeling.
"""
config_class = ESMplusplusConfig
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.vocab_size = config.vocab_size
self.embed = nn.Embedding(self.vocab_size, config.hidden_size)
self.transformer = TransformerStack(config.hidden_size, config.num_attention_heads, config.num_hidden_layers)
self.sequence_head = RegressionHead(config.hidden_size, self.vocab_size)
self.ce_loss = nn.CrossEntropyLoss()
self.tokenizer = EsmSequenceTokenizer()
@classmethod
def from_pretrained_esm(cls, model_name: str):
if '300' in model_name:
return ESMplusplus_300M()
elif '600' in model_name:
return ESMplusplus_600M()
else:
raise ValueError(f"Invalid model name: {model_name}")
@property
def device(self):
return next(self.parameters()).device
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
x = self.embed(input_ids)
output = self.transformer(x, attention_mask, output_hidden_states)
x = output.last_hidden_state
logits = self.sequence_head(x)
loss = None
if labels is not None:
loss = self.ce_loss(logits.view(-1, self.vocab_size), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForSequenceClassification(ESMplusplusForMaskedLM):
"""
ESM++ for sequence classification.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.classifier = RegressionHead(config.hidden_size * 2, config.num_labels, config.hidden_size * 4)
# we find that large intermediate projections help with sequence classification tasks (*4)
self.mse = nn.MSELoss()
self.ce = nn.CrossEntropyLoss()
self.bce = nn.BCEWithLogitsLoss()
def mean_pooling(self, x: torch.Tensor, attention_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
# x: (batch_size, seq_len, hidden_size)
# attention_mask: (batch_size, seq_len)
if attention_mask is None:
return x.mean(dim=1)
else:
attention_mask = attention_mask.unsqueeze(-1)
return (x * attention_mask).sum(dim=1) / attention_mask.sum(dim=1)
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
cls_features = x[:, 0, :]
mean_features = self.mean_pooling(x, attention_mask)
# we include mean pooling features to help with early convergence, the cost of this is basically zero
features = torch.cat([cls_features, mean_features], dim=-1)
logits = self.classifier(features)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
if self.num_labels == 1:
loss = self.mse(logits.flatten(), labels.flatten())
else:
loss = self.mse(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss = self.ce(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss = self.bce(logits, labels)
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
class ESMplusplusForTokenClassification(ESMplusplusForMaskedLM):
"""
ESM++ for token classification.
"""
def __init__(self, config: ESMplusplusConfig):
super().__init__(config)
self.config = config
self.num_labels = config.num_labels
self.classifier = RegressionHead(config.hidden_size, config.num_labels, config.hidden_size * 4)
# we find that large intermediate projections help with sequence classification tasks (*4)
self.loss_fct = nn.CrossEntropyLoss()
def forward(
self,
input_ids: torch.Tensor | None = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: bool = False,
) -> ESMplusplusOutput:
output = super().forward(input_ids, attention_mask, labels, output_hidden_states)
x = output.last_hidden_state
logits = self.classifier(x)
loss = None
if labels is not None:
loss = self.loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return ESMplusplusOutput(
loss=loss,
logits=logits,
last_hidden_state=x,
hidden_states=output.hidden_states,
)
### Loading
import os
from functools import cache
from pathlib import Path
from huggingface_hub import snapshot_download
@staticmethod
@cache
def data_root(model: str):
if "INFRA_PROVIDER" in os.environ:
return Path("")
# Try to download from hugginface if it doesn't exist
if model.startswith("esmc-300"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-300m-2024-12"))
elif model.startswith("esmc-600"):
path = Path(snapshot_download(repo_id="EvolutionaryScale/esmc-600m-2024-12"))
else:
raise ValueError(f"{model=} is an invalid model name.")
return path
def ESMplusplus_300M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=960,
num_attention_heads=15,
num_hidden_layers=30,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-300") / "data/weights/esmc_300m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
def ESMplusplus_600M(device: torch.device | str = "cpu"):
with torch.device(device):
config = ESMplusplusConfig(
hidden_size=1152,
num_attention_heads=18,
num_hidden_layers=36,
)
model = ESMplusplusForMaskedLM(config)
state_dict = torch.load(
data_root("esmc-600") / "data/weights/esmc_600m_2024_12_v0.pth",
map_location=device,
)
model.load_state_dict(state_dict)
return model
### Tokenization
from tokenizers import Tokenizer
from tokenizers.models import BPE
from tokenizers.processors import TemplateProcessing
from transformers import PreTrainedTokenizerFast
SEQUENCE_VOCAB = [
"<cls>", "<pad>", "<eos>", "<unk>",
"L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K",
"Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z",
"O", ".", "-", "|",
"<mask>",
]
class EsmSequenceTokenizer(PreTrainedTokenizerFast):
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
chain_break_token="|",
**kwargs,
):
all_tokens = SEQUENCE_VOCAB
token_to_id = {tok: ind for ind, tok in enumerate(all_tokens)}
# a character-level tokenizer is the same as BPE with no token merges
bpe = BPE(token_to_id, merges=[], unk_token=unk_token)
tokenizer = Tokenizer(bpe)
special_tokens = [
cls_token,
pad_token,
mask_token,
eos_token,
chain_break_token,
]
self.cb_token = chain_break_token
additional_special_tokens = [chain_break_token]
tokenizer.add_special_tokens(special_tokens)
# This is where we configure the automatic addition of special tokens when we call
# tokenizer(text, add_special_tokens=True). Note that you can also configure how two
# sequences are merged if you want.
tokenizer.post_processor = TemplateProcessing( # type: ignore
single="<cls> $A <eos>",
special_tokens=[
("<cls>", tokenizer.token_to_id("<cls>")),
("<eos>", tokenizer.token_to_id("<eos>")),
],
)
super().__init__(
tokenizer_object=tokenizer,
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
# These are a footgun, we never use the `bos` token anywhere so we're just overriding it here.
@property
def bos_token(self):
return self.cls_token
@property
def bos_token_id(self):
return self.cls_token_id
@property
def chain_break_token(self):
return self.cb_token
@property
def chain_break_token_id(self):
return self.convert_tokens_to_ids(self.chain_break_token)
@property
def all_token_ids(self):
return list(range(self.vocab_size))
@property
def special_token_ids(self):
return self.all_special_ids
|