Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,94 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# FastESM
|
7 |
+
FastESM is a Huggingface compatible plug in version of ESM2 rewritten with a newer PyTorch attention implementation.
|
8 |
+
|
9 |
+
Load any ESM2 models into a FastEsm model to dramatically speed up training and inference without **ANY** cost in performance.
|
10 |
+
|
11 |
+
Outputting attention maps (or the contact prediction head) is not natively possible with SDPA. You can still pass ```output_attentions``` to have attention calculated manually and returned.
|
12 |
+
Various other optimizations also make the base implementation slightly different than the one in transformers.
|
13 |
+
|
14 |
+
## Use with 🤗 transformers
|
15 |
+
|
16 |
+
### For working with embeddings
|
17 |
+
```python
|
18 |
+
import torch
|
19 |
+
from transformers import AutoModel, AutoTokenizer
|
20 |
+
|
21 |
+
model_path = 'Synthyra/ESM2-650M'
|
22 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
23 |
+
tokenizer = model.tokenizer
|
24 |
+
|
25 |
+
sequences = ['MPRTEIN', 'MSEQWENCE']
|
26 |
+
tokenized = tokenizer(sequences, padding=True, return_tensors='pt')
|
27 |
+
with torch.no_grad():
|
28 |
+
embeddings = model(**tokenized).last_hidden_state
|
29 |
+
|
30 |
+
print(embeddings.shape) # (2, 11, 1280)
|
31 |
+
```
|
32 |
+
|
33 |
+
### For working with sequence logits
|
34 |
+
```python
|
35 |
+
import torch
|
36 |
+
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
37 |
+
|
38 |
+
model = AutoModelForMaskedLM.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
39 |
+
with torch.no_grad():
|
40 |
+
logits = model(**tokenized).logits
|
41 |
+
|
42 |
+
print(logits.shape) # (2, 11, 33)
|
43 |
+
```
|
44 |
+
|
45 |
+
### For working with attention maps
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from transformers import AutoModel, AutoTokenizer
|
49 |
+
|
50 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.float16, trust_remote_code=True).eval()
|
51 |
+
with torch.no_grad():
|
52 |
+
attentions = model(**tokenized, output_attentions).attentions # tuples of (batch_size, num_heads, seq_len, seq_len)
|
53 |
+
|
54 |
+
print(attentions[-1].shape) # (2, 20, 11, 11)
|
55 |
+
```
|
56 |
+
|
57 |
+
## Embed entire datasets with no new code
|
58 |
+
To embed a list of protein sequences **fast**, just call embed_dataset. Sequences are sorted to reduce padding tokens, so the initial progress bar estimation is usually much longer than the actual time.
|
59 |
+
```python
|
60 |
+
embeddings = model.embed_dataset(
|
61 |
+
sequences=sequences, # list of protein strings
|
62 |
+
batch_size=16, # embedding batch size
|
63 |
+
max_len=2048, # truncate to max_len
|
64 |
+
full_embeddings=True, # return residue-wise embeddings
|
65 |
+
full_precision=False, # store as float32
|
66 |
+
pooling_type='mean', # use mean pooling if protein-wise embeddings
|
67 |
+
num_workers=0, # data loading num workers
|
68 |
+
sql=False, # return dictionary of sequences and embeddings
|
69 |
+
)
|
70 |
+
|
71 |
+
_ = model.embed_dataset(
|
72 |
+
sequences=sequences, # list of protein strings
|
73 |
+
batch_size=16, # embedding batch size
|
74 |
+
max_len=2048, # truncate to max_len
|
75 |
+
full_embeddings=True, # return residue-wise embeddings
|
76 |
+
full_precision=False, # store as float32
|
77 |
+
pooling_type='mean', # use mean pooling if protein-wise embeddings
|
78 |
+
num_workers=0, # data loading num workers
|
79 |
+
sql=True, # store sequences in local SQL database
|
80 |
+
sql_db_path='embeddings.db', # path to .db file of choice
|
81 |
+
)
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
### Citation
|
86 |
+
If you use any of this implementation or work please cite it (as well as the [ESM2](https://www.science.org/doi/10.1126/science.ade2574) paper).
|
87 |
+
```
|
88 |
+
@misc {FastESM2,
|
89 |
+
author = { Hallee, L. and Bichara, D. and Gleghorn, J, P. },
|
90 |
+
title = { FastESM2 },
|
91 |
+
year = 2024,
|
92 |
+
url = { https://huggingface.co/Synthyra/FastESM2_650 },
|
93 |
+
doi = { 10.57967/hf/3729 },
|
94 |
+
publisher = { Hugging Face }
|
95 |
+
}
|
96 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|