Surabhi-K commited on
Commit
c9e7d5c
·
verified ·
1 Parent(s): 8e065a1

Delete README (1).md

Browse files
Files changed (1) hide show
  1. README (1).md +0 -69
README (1).md DELETED
@@ -1,69 +0,0 @@
1
- ---
2
- license: llama2
3
- library_name: peft
4
- tags:
5
- - generated_from_trainer
6
- base_model: codellama/CodeLlama-7b-hf
7
- model-index:
8
- - name: working
9
- results: []
10
- ---
11
-
12
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
- should probably proofread and complete it, then remove this comment. -->
14
-
15
- # working
16
-
17
- This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on an unknown dataset.
18
- It achieves the following results on the evaluation set:
19
- - Loss: 0.1536
20
-
21
- ## Model description
22
-
23
- More information needed
24
-
25
- ## Intended uses & limitations
26
-
27
- More information needed
28
-
29
- ## Training and evaluation data
30
-
31
- More information needed
32
-
33
- ## Training procedure
34
-
35
- ### Training hyperparameters
36
-
37
- The following hyperparameters were used during training:
38
- - learning_rate: 5e-05
39
- - train_batch_size: 3
40
- - eval_batch_size: 3
41
- - seed: 42
42
- - gradient_accumulation_steps: 5
43
- - total_train_batch_size: 15
44
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
- - lr_scheduler_type: linear
46
- - lr_scheduler_warmup_steps: 20
47
- - num_epochs: 7
48
- - mixed_precision_training: Native AMP
49
-
50
- ### Training results
51
-
52
- | Training Loss | Epoch | Step | Validation Loss |
53
- |:-------------:|:-----:|:----:|:---------------:|
54
- | 2.0255 | 1.0 | 63 | 0.5661 |
55
- | 0.3616 | 2.0 | 126 | 0.3047 |
56
- | 0.1979 | 3.0 | 189 | 0.2129 |
57
- | 0.1565 | 4.0 | 252 | 0.1817 |
58
- | 0.1409 | 5.0 | 315 | 0.1644 |
59
- | 0.1319 | 6.0 | 378 | 0.1561 |
60
- | 0.1277 | 7.0 | 441 | 0.1536 |
61
-
62
-
63
- ### Framework versions
64
-
65
- - PEFT 0.7.1
66
- - Transformers 4.36.2
67
- - Pytorch 2.1.2
68
- - Datasets 2.15.0
69
- - Tokenizers 0.15.2