Commit
·
6ace1d4
1
Parent(s):
9660783
Update README.md
Browse files
README.md
CHANGED
@@ -13,199 +13,74 @@ license: apache-2.0
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
-
|
17 |
|
18 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
|
|
|
20 |
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
### Model Description
|
25 |
-
|
26 |
-
<!-- Provide a longer summary of what this model is. -->
|
27 |
-
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
- **Shared by [optional]:** [More Information Needed]
|
32 |
-
- **Model type:** [More Information Needed]
|
33 |
-
- **Language(s) (NLP):** [More Information Needed]
|
34 |
-
- **License:** [More Information Needed]
|
35 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
36 |
|
37 |
-
|
38 |
|
39 |
-
|
40 |
|
41 |
-
- **
|
42 |
-
- **
|
43 |
-
- **
|
|
|
|
|
44 |
|
45 |
## Uses
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
### Direct Use
|
50 |
-
|
51 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
52 |
-
|
53 |
-
[More Information Needed]
|
54 |
-
|
55 |
-
### Downstream Use [optional]
|
56 |
-
|
57 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
|
61 |
### Out-of-Scope Use
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
[More Information Needed]
|
66 |
-
|
67 |
-
## Bias, Risks, and Limitations
|
68 |
-
|
69 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
70 |
-
|
71 |
-
[More Information Needed]
|
72 |
-
|
73 |
-
### Recommendations
|
74 |
-
|
75 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
76 |
-
|
77 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
78 |
|
79 |
## How to Get Started with the Model
|
80 |
|
81 |
Use the code below to get started with the model.
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
#### Testing Data
|
119 |
-
|
120 |
-
<!-- This should link to a Data Card if possible. -->
|
121 |
-
|
122 |
-
[More Information Needed]
|
123 |
-
|
124 |
-
#### Factors
|
125 |
-
|
126 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
127 |
-
|
128 |
-
[More Information Needed]
|
129 |
-
|
130 |
-
#### Metrics
|
131 |
-
|
132 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
133 |
-
|
134 |
-
[More Information Needed]
|
135 |
-
|
136 |
-
### Results
|
137 |
-
|
138 |
-
[More Information Needed]
|
139 |
-
|
140 |
-
#### Summary
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
## Model Examination [optional]
|
145 |
-
|
146 |
-
<!-- Relevant interpretability work for the model goes here -->
|
147 |
-
|
148 |
-
[More Information Needed]
|
149 |
-
|
150 |
-
## Environmental Impact
|
151 |
-
|
152 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
153 |
-
|
154 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
155 |
-
|
156 |
-
- **Hardware Type:** [More Information Needed]
|
157 |
-
- **Hours used:** [More Information Needed]
|
158 |
-
- **Cloud Provider:** [More Information Needed]
|
159 |
-
- **Compute Region:** [More Information Needed]
|
160 |
-
- **Carbon Emitted:** [More Information Needed]
|
161 |
-
|
162 |
-
## Technical Specifications [optional]
|
163 |
-
|
164 |
-
### Model Architecture and Objective
|
165 |
-
|
166 |
-
[More Information Needed]
|
167 |
-
|
168 |
-
### Compute Infrastructure
|
169 |
-
|
170 |
-
[More Information Needed]
|
171 |
-
|
172 |
-
#### Hardware
|
173 |
-
|
174 |
-
[More Information Needed]
|
175 |
-
|
176 |
-
#### Software
|
177 |
-
|
178 |
-
[More Information Needed]
|
179 |
-
|
180 |
-
## Citation [optional]
|
181 |
-
|
182 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
183 |
-
|
184 |
-
**BibTeX:**
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
**APA:**
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Glossary [optional]
|
193 |
-
|
194 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
195 |
-
|
196 |
-
[More Information Needed]
|
197 |
-
|
198 |
-
## More Information [optional]
|
199 |
-
|
200 |
-
[More Information Needed]
|
201 |
-
|
202 |
-
## Model Card Authors [optional]
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
|
206 |
-
## Model Card Contact
|
207 |
-
|
208 |
-
[More Information Needed]
|
209 |
|
210 |
|
211 |
## Training procedure
|
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
+
<a href="https://www.superflows.ai"><img src="https://raw.githubusercontent.com/Superflows-AI/superflows/main/public/sf-logo-long.png" alt="Superflows Logo" width="400" style="margin-left:'auto' margin-right:'auto' display:'block'"/></a>
|
17 |
|
|
|
18 |
|
19 |
+
# Model Card for Superflows 7B 1
|
20 |
|
21 |
+
This is a language model fine-tuned on data for calling APIs as functions, in the format used by [Superflows](https://github.com/Superflows-AI/superflows).
|
22 |
|
23 |
+
This model is trained from Zephyr 7B Beta (a chat-based finetune of Mistral 7B) using QLoRA, a parameter-efficient fine-tuning method.
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
Reach out to [Henry](mailto:[email protected]) if you're interested in self-hosting Superflows using this model.
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
## Model Details
|
28 |
|
29 |
+
### Model Description
|
30 |
|
31 |
+
- **Developed by:** [Superflows](https://github.com/Superflows-AI/superflows)
|
32 |
+
- **Model type:** 7B parameter GPT-like model fine-tuned using QLoRA on Superflows dataset
|
33 |
+
- **Language(s) (NLP):** Primarily English
|
34 |
+
- **License:** Apache 2.0
|
35 |
+
- **Finetuned from model [optional]:** [Zephyr 7B Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta)
|
36 |
|
37 |
## Uses
|
38 |
|
39 |
+
Use as the LLM for a Superflows AI Copilot embedded in a software product. The Copilot can call the software's APIs to answer user questions and complete tasks on behalf of the user.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
### Out-of-Scope Use
|
42 |
|
43 |
+
Using it for anything other than as a Superflows AI Copilot for a software product.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
## How to Get Started with the Model
|
46 |
|
47 |
Use the code below to get started with the model.
|
48 |
|
49 |
+
```
|
50 |
+
# Visit https://dashboard.superflows.ai to implement in your software product
|
51 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
52 |
+
from peft import PeftModel, PeftConfig
|
53 |
+
|
54 |
+
base_model_id = "HuggingFaceH4/zephyr-7b-beta"
|
55 |
+
ft_model_id = "Superflows/Superflows-1"
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
58 |
+
base_model_id, add_bos_token=True, trust_remote_code=True
|
59 |
+
)
|
60 |
+
|
61 |
+
config = PeftConfig.from_pretrained(ft_model_id)
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id)
|
63 |
+
ft_model = PeftModel.from_pretrained(model, ft_model_id)to("cuda")
|
64 |
+
|
65 |
+
# Example prompt
|
66 |
+
messages = [
|
67 |
+
{"role": "system", "content": "You are Superflows chatbot AI. Your purpose is to assist users in Superflows via function calls\n\nSeek user assistance when necessary or more information is required\n\nAvoid directing users, instead complete tasks by outputting \"Commands\"\n\nToday's date is 2023-11-10.\n\nYou MUST exclusively use the functions listed below in the \"commands\" output. THIS IS VERY IMPORTANT! DO NOT FORGET THIS!\nThese are formatted with {{NAME}}: {{DESCRIPTION}}. PARAMETERS: {{PARAMETERS}}. Each parameter is formatted like: \"- {{NAME}} ({{DATATYPE}}: [{{POSSIBLE_VALUES}}]): {{DESCRIPTION}}. {{\"REQUIRED\" if parameter required}}\"\n1. list_users: List Users. PARAMETERS:\n- user_email (string): User's email address\n2. update_user: Update a User. PARAMETERS:\n- id (string): ID of user in UUID format. REQUIRED\n- email (string)\n- givenName (string)\n- familyName (string)\n- status (\"active\" | \"inactive\")\n\nTo use the output from a previous command in a later command, stop outputting commands - don't output the later command. If you output a command, you will be prompted again once it returns\n\nDon't copy the function outputs in full when explaining to the user, instead summarise it as concisely as you can - the user can ask follow-ups if they need more information\n\nAim to complete the task in the smallest number of steps possible. Be extremely concise in your responses\n\nThink and talk to the user in English\n\nThink step-by-step. Respond in the format below. Start with your reasoning, your plan, anything to tell the user, then any commands (you can call multiple, separate with a newline). Each section is optional - only output it if you need to. THIS IS VERY IMPORTANT! DO NOT FORGET THIS!\n\nReasoning: reason about how to achieve the user's request. Be concise. The user sees your reasoning as your 'thoughts'\n\nPlan:\n- short bulleted\n- list that conveys\n- long-term plan\n\nTell user: tell the user something. If you need to ask the user a question, do so here.\n\nCommands:\nFUNCTION_1(PARAM_1=VALUE_1, PARAM_2=VALUE_2, ...)\nFUNCTION_2(PARAM_3=VALUE_3 ...)"},
|
68 |
+
{"role": "user", "content": "Update [email protected]'s email to [email protected]"}
|
69 |
+
]
|
70 |
+
|
71 |
+
prompt = tokenizer.apply_chat_template(
|
72 |
+
messages, tokenize=False, add_generation_prompt=True
|
73 |
+
)
|
74 |
+
|
75 |
+
print(
|
76 |
+
tokenizer.decode(
|
77 |
+
ft_model.generate(**prompt, max_new_tokens=400, temperature=0.4)[0],
|
78 |
+
skip_special_tokens=True,
|
79 |
+
)
|
80 |
+
.split("<|assistant|>")[-1]
|
81 |
+
.strip()
|
82 |
+
)
|
83 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
## Training procedure
|