docs(readme): update python examples to reference correct model name
Browse files
README.md
CHANGED
|
@@ -64,8 +64,8 @@ input_texts = [
|
|
| 64 |
"sorting algorithms"
|
| 65 |
]
|
| 66 |
|
| 67 |
-
tokenizer = AutoTokenizer.from_pretrained("
|
| 68 |
-
model = AutoModel.from_pretrained("
|
| 69 |
|
| 70 |
# Tokenize the input texts
|
| 71 |
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
|
@@ -86,7 +86,7 @@ from sentence_transformers.util import cos_sim
|
|
| 86 |
|
| 87 |
sentences = ['That is a happy person', 'That is a very happy person']
|
| 88 |
|
| 89 |
-
model = SentenceTransformer('
|
| 90 |
embeddings = model.encode(sentences)
|
| 91 |
print(cos_sim(embeddings[0], embeddings[1]))
|
| 92 |
```
|
|
|
|
| 64 |
"sorting algorithms"
|
| 65 |
]
|
| 66 |
|
| 67 |
+
tokenizer = AutoTokenizer.from_pretrained("Supabase/gte-small")
|
| 68 |
+
model = AutoModel.from_pretrained("Supabase/gte-small")
|
| 69 |
|
| 70 |
# Tokenize the input texts
|
| 71 |
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
|
|
|
| 86 |
|
| 87 |
sentences = ['That is a happy person', 'That is a very happy person']
|
| 88 |
|
| 89 |
+
model = SentenceTransformer('Supabase/gte-small')
|
| 90 |
embeddings = model.encode(sentences)
|
| 91 |
print(cos_sim(embeddings[0], embeddings[1]))
|
| 92 |
```
|