{ "model_card": { "Date & Time": "2024-12-05T09:20:42.556129", "Model Card": [ "https://huggingface.co/FacebookAI/xlm-roberta-base" ], "License Information": [ "mit" ], "Citation Information": [ "\n@inproceedings{Wolf_Transformers_State-of-the-Art_Natural_2020,\n author = {Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien", "\n@Misc{peft,\n title = {PEFT: State-of-the-art Parameter-Efficient Fine-Tuning methods},\n author = {Sourab Mangrulkar and Sylvain Gugger and Lysandre Debut and Younes", "@article{DBLP:journals/corr/abs-1911-02116,\n author = {Alexis Conneau and\n Kartikay Khandelwal and\n Naman Goyal and\n Vishrav Chaudhary and\n Guillaume Wenzek and\n Francisco Guzm{\\'{a}}n and\n Edouard Grave and\n Myle Ott and\n Luke Zettlemoyer and\n Veselin Stoyanov},\n title = {Unsupervised Cross-lingual Representation Learning at Scale},\n journal = {CoRR},\n volume = {abs/1911.02116},\n year = {2019},\n url = {http://arxiv.org/abs/1911.02116},\n eprinttype = {arXiv},\n eprint = {1911.02116},\n timestamp = {Mon, 11 Nov 2019 18:38:09 +0100},\n biburl = {https://dblp.org/rec/journals/corr/abs-1911-02116.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}", "@inproceedings{reimers-2019-sentence-bert,\n title = \"Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks\",\n author = \"Reimers, Nils and Gurevych, Iryna\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing\",\n month = \"11\",\n year = \"2019\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://arxiv.org/abs/1908.10084\",\n}" ] }, "data_card": { "Get SynthSTEL Training Triplets Dataset": { "Date & Time": "2024-11-20T18:38:17.601393", "Dataset Name": [ "StyleDistance/mstyledistance_training_triplets" ], "Dataset Card": [ "https://huggingface.co/datasets/StyleDistance/mstyledistance_training_triplets" ] }, "Get SynthSTEL Training Triplets Dataset (train split)": { "Date & Time": "2024-11-20T18:57:23.493502" }, "Get SynthSTEL Training Triplets Dataset (train split) (shuffle)": { "Date & Time": "2024-11-30T22:23:37.582505" } }, "__version__": "0.35.0", "datetime": "2024-11-30T22:23:38.698076", "type": "TrainSentenceTransformer", "name": "Train StyleDistance Model", "version": 1.0, "fingerprint": "d175c760f39a5f90", "req_versions": { "dill": "0.3.8", "sqlitedict": "2.1.0", "torch": "2.3.1", "numpy": "1.26.4", "transformers": "4.40.1", "datasets": "2.17.0", "huggingface_hub": "0.23.4", "accelerate": "0.32.1", "peft": "0.11.1", "tiktoken": "0.7.0", "tokenizers": "0.19.1", "openai": "1.35.13", "ctransformers": "0.2.27", "optimum": "1.21.2", "bitsandbytes": "0.43.1", "litellm": "1.31.14", "trl": "0.8.1", "setfit": "1.0.3" }, "interpreter": "3.10.9 (main, Apr 17 2023, 21:32:03) [GCC 7.5.0]" }