File size: 18,344 Bytes
92233d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
diff --git a/.gitignore b/.gitignore
index c243024..8c28ce3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -175,6 +175,7 @@ debug.py
wandb/
nohup.out
lm-evaluation-harness/
+bigcode-evaluation-harness/
results/**/*.json
results/**/*.jsonl
results/**/*.db
diff --git a/README.md b/README.md
index 8813a32..b276a78 100644
--- a/README.md
+++ b/README.md
@@ -26,6 +26,11 @@ bash scripts/data.sh
git clone https://github.com/EleutherAI/lm-evaluation-harness.git
cd lm-evaluation-harness
pip install -e .
+# commit: 9cfa52b
+git clone https://github.com/bigcode-project/bigcode-evaluation-harness.git
+cd bigcode-evaluation-harness
+# change `pyext==0.5` in `bigcode-evaluation-harness/requirements.txt`, ref: https://github.com/bigcode-project/bigcode-evaluation-harness/pull/181
+pip install -e .
```
## 📃 TODO
diff --git a/scripts/eval.sh b/scripts/eval.sh
deleted file mode 100644
index 4f41b37..0000000
--- a/scripts/eval.sh
+++ /dev/null
@@ -1,96 +0,0 @@
-# nohup srun -p MoE --gres gpu:1 bash scripts/eval.sh all /mnt/petrelfs/share_data/quxiaoye/models/Sheared-LLaMA-2.7B True results/Sheared-LLaMA-2.7B 1>logs/eval-all-Sheared-LLaMA-2.7B.log 2>&1 &
-
-mmlu() {
- # MMLU: https://github.com/princeton-nlp/LLM-Shearing/blob/20ebd2645a8ff5fa65874e1347f9891b80e01805/icl_eval/run_eval.sh#L18
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks mmlu_computer_security,mmlu_high_school_chemistry,mmlu_philosophy,mmlu_elementary_mathematics,mmlu_prehistory,mmlu_formal_logic,mmlu_high_school_mathematics,mmlu_econometrics,mmlu_moral_scenarios,mmlu_college_mathematics,mmlu_high_school_government_and_politics,mmlu_us_foreign_policy,mmlu_high_school_world_history,mmlu_conceptual_physics,mmlu_college_medicine,mmlu_international_law,mmlu_abstract_algebra,mmlu_logical_fallacies,mmlu_machine_learning,mmlu_medical_genetics,mmlu_public_relations,mmlu_college_biology,mmlu_marketing,mmlu_electrical_engineering,mmlu_anatomy,mmlu_high_school_us_history,mmlu_high_school_biology,mmlu_miscellaneous,mmlu_high_school_psychology,mmlu_sociology,mmlu_business_ethics,mmlu_high_school_geography,mmlu_human_aging,mmlu_high_school_statistics,mmlu_moral_disputes,mmlu_professional_psychology,mmlu_global_facts,mmlu_college_physics,mmlu_nutrition,mmlu_high_school_macroeconomics,mmlu_world_religions,mmlu_professional_medicine,mmlu_high_school_computer_science,mmlu_college_chemistry,mmlu_human_sexuality,mmlu_high_school_microeconomics,mmlu_astronomy,mmlu_professional_accounting,mmlu_high_school_european_history,mmlu_jurisprudence,mmlu_professional_law,mmlu_high_school_physics,mmlu_virology,mmlu_management,mmlu_college_computer_science,mmlu_clinical_knowledge,mmlu_security_studies \
- --num_fewshot 5 \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/mmlu.json
-}
-
-bbh() {
- # Big Bench Hard (BBH): https://arxiv.org/pdf/2210.09261.pdf
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks bbh_fewshot_boolean_expressions,bbh_fewshot_causal_judgement,bbh_fewshot_date_understanding,bbh_fewshot_disambiguation_qa,bbh_fewshot_dyck_languages,bbh_fewshot_formal_fallacies,bbh_fewshot_geometric_shapes,bbh_fewshot_hyperbaton,bbh_fewshot_logical_deduction_five_objects,bbh_fewshot_logical_deduction_seven_objects,bbh_fewshot_logical_deduction_three_objects,bbh_fewshot_movie_recommendation,bbh_fewshot_multistep_arithmetic_two,bbh_fewshot_navigate,bbh_fewshot_object_counting,bbh_fewshot_penguins_in_a_table,bbh_fewshot_reasoning_about_colored_objects,bbh_fewshot_ruin_names,bbh_fewshot_salient_translation_error_detection,bbh_fewshot_snarks,bbh_fewshot_sports_understanding,bbh_fewshot_temporal_sequences,bbh_fewshot_tracking_shuffled_objects_five_objects,bbh_fewshot_tracking_shuffled_objects_seven_objects,bbh_fewshot_tracking_shuffled_objects_three_objects,bbh_fewshot_web_of_lies,bbh_fewshot_word_sorting \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/bbh.json
-}
-
-reasoning() {
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks gsm8k_cot \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/reasoning.json
-}
-
-qa() {
- MODEL=$1
- TRUST_REMOTE_CODE=$2
- RESULT_DIR=$3
- mkdir -p $RESULT_DIR
-
- lm_eval \
- --log_samples \
- --model hf \
- --model_args pretrained=$MODEL,trust_remote_code=$TRUST_REMOTE_CODE \
- --tasks arc_easy,arc_challenge,boolq \
- --num_fewshot 0 \
- --device cuda:0 \
- --batch_size auto \
- --verbosity DEBUG \
- --output_path $RESULT_DIR/qa.json
-}
-
-EVAL_TASK=$1
-shift 1
-start=$(date +%s)
-case $EVAL_TASK in
- mmlu)
- mmlu $* ;;
- bbh)
- bbh $* ;;
- reasoning)
- reasoning $* ;;
- qa)
- qa $* ;;
- all)
- mmlu $*
- bbh $*
- reasoning $*
- qa $*
- ;;
- *)
- echo "$EVAL_TASK not recognized!";;
-esac
-end=$(date +%s)
-echo "Elapsed Time: $(($end-$start)) seconds"
diff --git a/scripts/four_mix/freeze_gate.sh b/scripts/four_mix/freeze_gate.sh
index d94d78c..70afb8e 100644
--- a/scripts/four_mix/freeze_gate.sh
+++ b/scripts/four_mix/freeze_gate.sh
@@ -83,8 +83,11 @@ num_gpus=4
python -m src.eval.gen_mt_ans \
--model-path $output_dir \
- --model-id $task_name \
- --num-gpus-total $num_gpus
+ --model-id $task_name
+
+ python -m src.eval.gen_alpaca_eval_ans \
+ --model-path $output_dir \
+ --model-id $task_name
}
# nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --gres=gpu:4 bash "/mnt/petrelfs/zhutong/adaptive-sft-for-moe/scripts/one_data_steps_dynamic.sh" "llama_moe_orca_epochs_cluster_4" "auto" "/mnt/petrelfs/zhutong/llama-moe-models/LLaMA-MoE-v1-3_5B-2_8-new" "data/open_orca_clustered/4" "data/open_orca_clustered_eval/4" 1>logs/llama_moe_orca_cluster_4_dynamic.log 2>&1 &
diff --git a/scripts/gen_mt_bench_ans.sh b/scripts/gen_mt_bench_ans.sh
deleted file mode 100644
index f251644..0000000
--- a/scripts/gen_mt_bench_ans.sh
+++ /dev/null
@@ -1,32 +0,0 @@
-#!/usr/bin/bash
-
-#SBATCH --job-name=moe_gen
-#SBATCH --output=logs/%x-%j.log
-#SBATCH --error=logs/%x-%j.log
-
-#SBATCH --partition=MoE
-#SBATCH --ntasks-per-node=1
-#SBATCH --cpus-per-task=16
-#SBATCH --mem=64G
-
-#SBATCH --nodes=1
-#SBATCH --gres=gpu:1
-#SBATCH --quotatype=auto
-
-{
- # python -m fastchat.llm_judge.gen_model_answer \
- # --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 \
- # --model-id sheared_llama_sharegpt
-
- # python -m fastchat.llm_judge.gen_model_answer \
- # --model-path outputs/sheared_llama_uniform_mix/moe_sft-2421072 \
- # --model-id sheared_llama_uniform_mix
-
- bash scripts/cp_model_files.sh outputs/llama_moe/moe_sft-2409782
- python -m fastchat.llm_judge.gen_model_answer \
- --model-path outputs/llama_moe/moe_sft-2409782 \
- --model-id llama_moe_uniform_mix
-}
-
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path outputs/sheared_llama_sharegpt/moe_sft-2411306 --model-id sheared_llama_sharegpt 1>logs/mt_bench_gen_sheared_llama_sharegpt.log 2>&1 &
-# nohup srun -p MoE -n1 -N1 --gres=gpu:1 --quotatype spot python -m fastchat.llm_judge.gen_model_answer --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/llama_moe_sharegpt/moe_sft-2411309 --model-id llama_moe_sharegpt 1>logs/mt_bench_gen_llama_moe_sharegpt.log 2>&1 &
diff --git a/scripts/multi.sh b/scripts/multi.sh
index bcd83b8..e399761 100644
--- a/scripts/multi.sh
+++ b/scripts/multi.sh
@@ -100,5 +100,8 @@ nohup srun -p MoE --ntasks-per-node=1 --cpus-per-task=16 --mem=128G --nodes=1 --
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_mt_ans-llama_moe_four_mix_uniform.log 2>&1 &
nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_mt_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_mt_ans-sheared_four_mix_uniform.log 2>&1 &
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
-nohup srun -p MoE --gres gpu:1 python -m src.eval.get_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/llama_moe_four_mix_uniform/bash-2485396 --model-id llama_moe_four_mix_uniform 1>logs/gen_alpaca_eval-llama_moe_four_mix_uniform.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 python -m src.eval.gen_alpaca_eval_ans --model-path /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048/sheared_four_mix_uniform/bash-2485397 --model-id sheared_four_mix_uniform 1>logs/gen_alpaca_eval-sheared_four_mix_uniform.log 2>&1 &
+
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad_wo_gate_noise/moe_sft-2492650 True results/llama_moe_four_mix_wo_pad_wo_gate_noise 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad_wo_gate_noise.log 2>&1 &
+nohup srun -p MoE --gres gpu:1 bash scripts/eval/eval.sh reasoning /mnt/petrelfs/zhutong/adaptive-sft-for-moe/outputs/len2048_dynamic_remove_padding_tokens/llama_moe_four_mix_wo_pad/moe_sft-2491633 True results/llama_moe_four_mix_wo_pad 1>logs/eval-reasoning-llama_moe_four_mix_wo_pad.log 2>&1 &
diff --git a/src/callbacks.py b/src/callbacks.py
index a750f69..26ed644 100644
--- a/src/callbacks.py
+++ b/src/callbacks.py
@@ -6,6 +6,7 @@ import torch
import numpy as np
from loguru import logger
from transformers.trainer_callback import TrainerCallback, TrainerState, TrainerControl
+from transformers.utils import is_flash_attn_2_available
from src.utils.config import TrainingArguments
from src.utils.io import append_jsonlines
@@ -22,6 +23,7 @@ class AdaptiveSamplingCallback(TrainerCallback):
criterion: Optional[Literal["min", "max", "mean"]] = "mean",
sim_type: Optional[Literal["cos", "l2"]] = "cos",
):
+ assert is_flash_attn_2_available(), "Make sure you have flash-attn installed"
self.criterion = criterion
self.sim_type = sim_type
self.prob_map = {}
diff --git a/src/core/train.py b/src/core/train.py
index 2be5558..7e09857 100644
--- a/src/core/train.py
+++ b/src/core/train.py
@@ -117,7 +117,9 @@ def train():
train_dataset = SubDirWeightedPackedJsonlDataset(
data_args.dataset_dir_or_path,
tokenizer,
- prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+ # prob_map=get_uniform_sampling_ratio(data_args.dataset_dir_or_path),
+ # prob_map={"code": 0.25119094959816823, "math": 0.2674581878910902, "orca": 0.243050776175138, "sharegpt": 0.23830008633560357},
+ prob_map=data_args.prob_map,
seed=training_args.seed,
)
elif datapath.is_file():
diff --git a/src/eval/get_alpaca_eval_ans.py b/src/eval/get_alpaca_eval_ans.py
deleted file mode 100644
index 1ff3e5e..0000000
--- a/src/eval/get_alpaca_eval_ans.py
+++ /dev/null
@@ -1,113 +0,0 @@
-import argparse
-from pathlib import Path
-
-import torch
-import datasets
-from tqdm import tqdm
-
-from src.core.train import get_model_and_tokenizer
-from src.utils.conversation import Conversation
-from src.utils.io import dump_json
-
-
-@torch.inference_mode()
-def run_eval(model_path, model_id, max_new_tokens):
- model, tokenizer = get_model_and_tokenizer(
- "auto",
- model_path,
- torch_dtype=torch.bfloat16,
- trust_remote_code=True,
- )
- model.cuda()
- model.eval()
-
- conv = Conversation()
- outputs = []
- eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval")["eval"]
- for example in tqdm(eval_set, desc="Eval"):
- conv.append_message(conv.roles[0], example["instruction"])
- conv.append_message(conv.roles[1], None)
- prompt = conv.get_prompt()
- input_ids = tokenizer([prompt], return_tensors="pt").input_ids
- conv.clear_msg()
- # generate here is a placeholder for your models generations
- output_ids = model.generate(
- input_ids.cuda(),
- do_sample=False,
- temperature=0.0,
- max_new_tokens=max_new_tokens,
- )
- if model.config.is_encoder_decoder:
- output_ids = output_ids[0]
- else:
- output_ids = output_ids[0][len(input_ids[0]) :] # noqa: E203
- # be consistent with the template's stop_token_ids
- if conv.stop_token_ids:
- stop_token_ids_index = [
- i
- for i, id in enumerate(output_ids)
- if id in conv.stop_token_ids
- ]
- if len(stop_token_ids_index) > 0:
- output_ids = output_ids[: stop_token_ids_index[0]]
-
- output = tokenizer.decode(
- output_ids,
- spaces_between_special_tokens=False,
- )
- if conv.stop_str and isinstance(conv.stop_str, list):
- stop_str_indices = sorted(
- [
- output.find(stop_str)
- for stop_str in conv.stop_str
- if output.find(stop_str) > 0
- ]
- )
- if len(stop_str_indices) > 0:
- output = output[: stop_str_indices[0]]
- elif conv.stop_str and output.find(conv.stop_str) > 0:
- output = output[: output.find(conv.stop_str)]
-
- for special_token in tokenizer.special_tokens_map.values():
- if isinstance(special_token, list):
- for special_tok in special_token:
- output = output.replace(special_tok, "")
- else:
- output = output.replace(special_token, "")
- output = output.strip()
-
- if conv.name == "xgen" and output.startswith("Assistant:"):
- output = output.replace("Assistant:", "", 1).strip()
-
- example["output"] = output
- outputs.append(example)
-
- outpath = Path("results/alpaca_eval") / f"{model_id}.json"
- dump_json(outputs, outpath, indent=2)
-
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "--model-path",
- type=str,
- required=True,
- help="The path to the weights. This can be a local folder or a Hugging Face repo ID.",
- )
- parser.add_argument(
- "--model-id", type=str, required=True, help="A custom name for the model."
- )
- parser.add_argument(
- "--max-new-token",
- type=int,
- default=1024,
- help="The maximum number of new generated tokens.",
- )
-
- args = parser.parse_args()
-
- run_eval(
- model_path=args.model_path,
- model_id=args.model_id,
- max_new_tokens=args.max_new_token,
- )
diff --git a/src/utils/config.py b/src/utils/config.py
index 3ea5283..d4060d9 100644
--- a/src/utils/config.py
+++ b/src/utils/config.py
@@ -6,6 +6,7 @@ import torch
import transformers
from src.utils.io import load_json
+from src.data import get_uniform_sampling_ratio
@dataclass
@@ -33,7 +34,9 @@ class ModelArguments:
)
attn_impl: str = field(
default="flash_attention_2",
- metadata={"help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"}
+ metadata={
+ "help": "attention implementation, choice from [eager, flash_attention_2, sdpa] (default: `flash_attention_2`)"
+ },
)
def __post_init__(self):
@@ -56,6 +59,18 @@ class DataArguments:
default="data/merged",
metadata={"help": "Path to dataset directory or a single jsonl file"},
)
+ prob_map: str = field(
+ default=None,
+ metadata={"help": "Path to the probability map file"},
+ )
+
+ def __post_init__(self):
+ if self.prob_map is not None:
+ if not pathlib.Path(self.prob_map).exists():
+ raise ValueError(f"Probability map file {self.prob_map} not found")
+ self.prob_map = load_json(self.prob_map)
+ else:
+ self.prob_map = get_uniform_sampling_ratio(self.dataset_dir_or_path)
@dataclass
@@ -70,9 +85,7 @@ class TrainingArguments(transformers.TrainingArguments):
)
max_eval_steps_per_type: int = field(
default=10,
- metadata={
- "help": "Maximum number of steps to perform during evaluation."
- },
+ metadata={"help": "Maximum number of steps to perform during evaluation."},
)
dynamic_sampling_sim_type: Literal["cos", "l2"] = field(
default="l2",
@@ -88,7 +101,5 @@ class TrainingArguments(transformers.TrainingArguments):
)
freeze_gate: bool = field(
default=False,
- metadata={
- "help": "Whether to freeze the gate during training."
- },
+ metadata={"help": "Whether to freeze the gate during training."},
)
|