--- library_name: transformers license: apache-2.0 base_model: facebook/convnextv2-base-1k-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnextv2-base-1k-224_rice-leaf-disease-augmented-v4_fft results: [] --- # convnextv2-base-1k-224_rice-leaf-disease-augmented-v4_fft This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4315 - Accuracy: 0.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 512 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9643 | 0.5 | 128 | 1.7264 | 0.6040 | | 1.2673 | 1.0 | 256 | 0.7987 | 0.8490 | | 0.5214 | 1.5 | 384 | 0.3728 | 0.9094 | | 0.2476 | 2.0 | 512 | 0.4170 | 0.8792 | | 0.104 | 2.5 | 640 | 0.2676 | 0.9262 | | 0.0573 | 3.0 | 768 | 0.2642 | 0.9262 | | 0.0262 | 3.5 | 896 | 0.3739 | 0.9228 | | 0.0171 | 4.0 | 1024 | 0.3519 | 0.9362 | | 0.0032 | 4.5 | 1152 | 0.3476 | 0.9295 | | 0.0011 | 5.0 | 1280 | 0.3547 | 0.9362 | | 0.0008 | 5.5 | 1408 | 0.3541 | 0.9329 | | 0.0008 | 6.0 | 1536 | 0.3556 | 0.9329 | | 0.0008 | 6.5 | 1664 | 0.3524 | 0.9329 | | 0.0005 | 7.0 | 1792 | 0.3775 | 0.9329 | | 0.0004 | 7.5 | 1920 | 0.3850 | 0.9329 | | 0.0003 | 8.0 | 2048 | 0.3900 | 0.9329 | | 0.0003 | 8.5 | 2176 | 0.3965 | 0.9295 | | 0.0002 | 9.0 | 2304 | 0.4000 | 0.9295 | | 0.0002 | 9.5 | 2432 | 0.4019 | 0.9295 | | 0.0002 | 10.0 | 2560 | 0.4018 | 0.9295 | | 0.0002 | 10.5 | 2688 | 0.4021 | 0.9295 | | 0.0002 | 11.0 | 2816 | 0.4063 | 0.9329 | | 0.0002 | 11.5 | 2944 | 0.4145 | 0.9295 | | 0.0001 | 12.0 | 3072 | 0.4184 | 0.9295 | | 0.0001 | 12.5 | 3200 | 0.4249 | 0.9295 | | 0.0001 | 13.0 | 3328 | 0.4271 | 0.9295 | | 0.0001 | 13.5 | 3456 | 0.4304 | 0.9295 | | 0.0001 | 14.0 | 3584 | 0.4315 | 0.9295 | | 0.0001 | 14.5 | 3712 | 0.4316 | 0.9295 | | 0.0001 | 15.0 | 3840 | 0.4315 | 0.9295 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0