spacemanidol commited on
Commit
ff195b8
·
verified ·
1 Parent(s): 8ebc5a7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -101,7 +101,7 @@ language:
101
 
102
 
103
  ## News
104
- 12/04/2024: Release of `snowflake-arctic-embed-m-v2.0` and `snowflake-arctic-embed-m-v2.0` our newest models with multilingual workloads in mind.
105
 
106
  ## Models
107
  Snowflake arctic-embed-l-v2.0 is the newest addition to the suite of embedding models Snowflake has released optimizing for retrieval performance and inference efficiency.
@@ -112,11 +112,11 @@ Key Features:
112
 
113
  1. Multilingual without compromise: Excels in English and non-English retrieval, outperforming leading open-source and proprietary models on benchmarks like MTEB Retrieval, CLEF, and MIRACL.
114
 
115
- 2. Inference efficiency: Its 300m non-embedding parameters inference is fast and efficient for any scale.
116
 
117
  3. Compression-friendly: Achieves high-quality retrieval with embeddings as small as 128 bytes/vector using Matryoshka Representation Learning (MRL) and quantization-aware embedding training.
118
 
119
- 4. Drop-In Replacement: arctic-embed-l-v2.0 builds on [XMLR-Large](https://huggingface.co/FacebookAI/xlm-roberta-large) which allows direct drop-in inference replacement with any form of new libraries, kernels, inferene engines etc.
120
 
121
 
122
  ### Quality Benchmarks
@@ -125,17 +125,15 @@ You no longer need to support models to empower high-quality English and multili
125
 
126
  | Model Name | # params | # non-emb params | # dimensions | BEIR (15) | MIRACL (4) | CLEF (Focused) | CLEF (Full) |
127
  |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
 
 
 
128
  | me5 base | 560M | 303M | 1024 | 51.4 | 54.0 | 43.0 | 34.6 |
129
  | bge-m3 (BAAI) | 568M | 303M | 1024 | 48.8 | **56.8** | 40.8 | 41.3 |
130
  | gte (Alibaba) | 305M | 113M | 768 | 51.1 | 52.3 | 47.7 | 53.1 |
131
- | Arctic-M (v1.0) | 109M | 86M | 768 | 54.9 | 24.9 | 34.4 | 29.1 |
132
- | snowflake-arctic-m | 335M | 303M | 1024 | 56.0 | 34.8 | 38.2 | 33.7 |
133
  | me5 base | 560M | 303M | 1024 | 51.4 | 54.0 | 43.0 | 34.6 |
134
  | bge-m3 (BAAI) | 568M | 303M | 1024 | 48.8 | 56.8 | 40.8 | 41.3 |
135
  | gte (Alibaba) | 305M | 113M | 768 | 51.1 | 52.3 | 47.7 | 53.1 |
136
- | snowflake-arctic-m | 109M | 86M | 768 | 54.9 | 24.9 | 34.4 | 29.1 |
137
- | snowflake-arctic-l | 335M | 303M | 1024 | 56.0 | 34.8 | 38.2 | 33.7 |
138
- | **snowflake-arctic-l-v2.0** | 568M | 303M | 1024 | **55.6** | 55.8 | **52.9** | **54.3** |
139
 
140
  Aside from high-quality retrieval arctic delivers embeddings that are easily compressible. Leverage vector truncation via MRL to decrease vector size by 4x with less than 3% degredation in quality.
141
  Combine MRLed vectors with vector compression (Int4) to power retrieval in 128 bytes per doc.
@@ -177,6 +175,8 @@ for query, query_scores in zip(queries, scores):
177
 
178
  ```
179
 
 
 
180
  ### Using Huggingface Transformers
181
 
182
 
 
101
 
102
 
103
  ## News
104
+ 12/04/2024: Release of `[snowflake-arctic-embed-l-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-l-v2.0)` and `[snowflake-arctic-embed-m-v2.0](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v2.0)` our newest models with multilingual workloads in mind.
105
 
106
  ## Models
107
  Snowflake arctic-embed-l-v2.0 is the newest addition to the suite of embedding models Snowflake has released optimizing for retrieval performance and inference efficiency.
 
112
 
113
  1. Multilingual without compromise: Excels in English and non-English retrieval, outperforming leading open-source and proprietary models on benchmarks like MTEB Retrieval, CLEF, and MIRACL.
114
 
115
+ 2. Inference efficiency: Its 303m non-embedding parameters inference is fast and efficient for any scale.
116
 
117
  3. Compression-friendly: Achieves high-quality retrieval with embeddings as small as 128 bytes/vector using Matryoshka Representation Learning (MRL) and quantization-aware embedding training.
118
 
119
+ 4. Drop-In Replacement: arctic-embed-l-v2.0 builds on [XMLR-Large](https://huggingface.co/FacebookAI/xlm-roberta-large) which allows direct drop-in inference replacement with any form of new libraries, kernels, inference engines etc.
120
 
121
 
122
  ### Quality Benchmarks
 
125
 
126
  | Model Name | # params | # non-emb params | # dimensions | BEIR (15) | MIRACL (4) | CLEF (Focused) | CLEF (Full) |
127
  |---|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
128
+ | **snowflake-arctic-l-v2.0** | 568M | 303M | 1024 | **55.6** | 55.8 | **52.9** | **54.3** |
129
+ | snowflake-arctic-m | 109M | 86M | 768 | 54.9 | 24.9 | 34.4 | 29.1 |
130
+ | snowflake-arctic-l | 335M | 303M | 1024 | 56.0 | 34.8 | 38.2 | 33.7 |
131
  | me5 base | 560M | 303M | 1024 | 51.4 | 54.0 | 43.0 | 34.6 |
132
  | bge-m3 (BAAI) | 568M | 303M | 1024 | 48.8 | **56.8** | 40.8 | 41.3 |
133
  | gte (Alibaba) | 305M | 113M | 768 | 51.1 | 52.3 | 47.7 | 53.1 |
 
 
134
  | me5 base | 560M | 303M | 1024 | 51.4 | 54.0 | 43.0 | 34.6 |
135
  | bge-m3 (BAAI) | 568M | 303M | 1024 | 48.8 | 56.8 | 40.8 | 41.3 |
136
  | gte (Alibaba) | 305M | 113M | 768 | 51.1 | 52.3 | 47.7 | 53.1 |
 
 
 
137
 
138
  Aside from high-quality retrieval arctic delivers embeddings that are easily compressible. Leverage vector truncation via MRL to decrease vector size by 4x with less than 3% degredation in quality.
139
  Combine MRLed vectors with vector compression (Int4) to power retrieval in 128 bytes per doc.
 
175
 
176
  ```
177
 
178
+
179
+
180
  ### Using Huggingface Transformers
181
 
182