Upload README.md
Browse files
README.md
CHANGED
@@ -9076,7 +9076,9 @@ Key Features:
|
|
9076 |
|
9077 |
3. Compression-friendly: Achieves high-quality retrieval with embeddings as small as 128 bytes/vector using Matryoshka Representation Learning (MRL) and quantization-aware embedding training.
|
9078 |
|
9079 |
-
4. Drop-In Replacement: arctic-embed-l-v2.0 builds on
|
|
|
|
|
9080 |
|
9081 |
|
9082 |
### Quality Benchmarks
|
@@ -9151,10 +9153,10 @@ model.eval()
|
|
9151 |
query_prefix = 'query: '
|
9152 |
queries = ['what is snowflake?', 'Where can I get the best tacos?']
|
9153 |
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
|
9154 |
-
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=
|
9155 |
|
9156 |
documents = ['The Data Cloud!', 'Mexico City of Course!']
|
9157 |
-
document_tokens = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=
|
9158 |
|
9159 |
# Compute token embeddings
|
9160 |
with torch.no_grad():
|
|
|
9076 |
|
9077 |
3. Compression-friendly: Achieves high-quality retrieval with embeddings as small as 128 bytes/vector using Matryoshka Representation Learning (MRL) and quantization-aware embedding training.
|
9078 |
|
9079 |
+
4. Drop-In Replacement: arctic-embed-l-v2.0 builds on BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) which allows direct drop-in inference replacement with any form of new libraries, kernels, inference engines etc.
|
9080 |
+
|
9081 |
+
5. Long Context Support: arctic-embed-l-v2.0 builds on [BAAI/bge-m3-retromae](https://huggingface.co/BAAI/bge-m3-retromae) which can support a context window of up to 8192 via the use of RoPE.
|
9082 |
|
9083 |
|
9084 |
### Quality Benchmarks
|
|
|
9153 |
query_prefix = 'query: '
|
9154 |
queries = ['what is snowflake?', 'Where can I get the best tacos?']
|
9155 |
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
|
9156 |
+
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=8192)
|
9157 |
|
9158 |
documents = ['The Data Cloud!', 'Mexico City of Course!']
|
9159 |
+
document_tokens = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=8192)
|
9160 |
|
9161 |
# Compute token embeddings
|
9162 |
with torch.no_grad():
|