Update README.md
Browse files
README.md
CHANGED
|
@@ -239,132 +239,25 @@ pipeline_tag: image-text-to-text
|
|
| 239 |
|
| 240 |
## 4. Usage
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
import torch
|
| 245 |
-
import torchvision.transforms as T
|
| 246 |
-
from PIL import Image
|
| 247 |
-
from torchvision.transforms.functional import InterpolationMode
|
| 248 |
-
from transformers import AutoConfig, AutoModel, AutoTokenizer
|
| 249 |
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
transform = T.Compose([
|
| 256 |
-
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
| 257 |
-
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
| 258 |
-
T.ToTensor(),
|
| 259 |
-
T.Normalize(mean=MEAN, std=STD)
|
| 260 |
-
])
|
| 261 |
-
return transform
|
| 262 |
-
|
| 263 |
-
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
| 264 |
-
best_ratio_diff = float('inf')
|
| 265 |
-
best_ratio = (1, 1)
|
| 266 |
-
area = width * height
|
| 267 |
-
for ratio in target_ratios:
|
| 268 |
-
target_aspect_ratio = ratio[0] / ratio[1]
|
| 269 |
-
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
| 270 |
-
if ratio_diff < best_ratio_diff:
|
| 271 |
-
best_ratio_diff = ratio_diff
|
| 272 |
-
best_ratio = ratio
|
| 273 |
-
elif ratio_diff == best_ratio_diff:
|
| 274 |
-
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
| 275 |
-
best_ratio = ratio
|
| 276 |
-
return best_ratio
|
| 277 |
-
|
| 278 |
-
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
| 279 |
-
orig_width, orig_height = image.size
|
| 280 |
-
aspect_ratio = orig_width / orig_height
|
| 281 |
-
target_ratios = set(
|
| 282 |
-
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
| 283 |
-
i * j <= max_num and i * j >= min_num)
|
| 284 |
-
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
| 285 |
-
target_aspect_ratio = find_closest_aspect_ratio(
|
| 286 |
-
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
| 287 |
-
target_width = image_size * target_aspect_ratio[0]
|
| 288 |
-
target_height = image_size * target_aspect_ratio[1]
|
| 289 |
-
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
| 290 |
-
resized_img = image.resize((target_width, target_height))
|
| 291 |
-
processed_images = []
|
| 292 |
-
for i in range(blocks):
|
| 293 |
-
box = (
|
| 294 |
-
(i % (target_width // image_size)) * image_size,
|
| 295 |
-
(i // (target_width // image_size)) * image_size,
|
| 296 |
-
((i % (target_width // image_size)) + 1) * image_size,
|
| 297 |
-
((i // (target_width // image_size)) + 1) * image_size
|
| 298 |
-
)
|
| 299 |
-
split_img = resized_img.crop(box)
|
| 300 |
-
processed_images.append(split_img)
|
| 301 |
-
assert len(processed_images) == blocks
|
| 302 |
-
if use_thumbnail and len(processed_images) != 1:
|
| 303 |
-
thumbnail_img = image.resize((image_size, image_size))
|
| 304 |
-
processed_images.append(thumbnail_img)
|
| 305 |
-
return processed_images
|
| 306 |
-
|
| 307 |
-
def load_image(image_file, input_size=448, max_num=12):
|
| 308 |
-
image = Image.open(image_file).convert('RGB')
|
| 309 |
-
transform = build_transform(input_size=input_size)
|
| 310 |
-
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
| 311 |
-
pixel_values = [transform(image) for image in images]
|
| 312 |
-
pixel_values = torch.stack(pixel_values)
|
| 313 |
-
return pixel_values
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 319 |
-
num_layers = config.llm_config.num_hidden_layers
|
| 320 |
-
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
| 321 |
-
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
| 322 |
-
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
| 323 |
-
layer_cnt = 0
|
| 324 |
-
for i, num_layer in enumerate(num_layers_per_gpu):
|
| 325 |
-
for j in range(num_layer):
|
| 326 |
-
device_map[f'language_model.model.layers.{layer_cnt}'] = i
|
| 327 |
-
layer_cnt += 1
|
| 328 |
-
device_map['vision_model'] = 0
|
| 329 |
-
device_map['mlp1'] = 0
|
| 330 |
-
device_map['language_model.model.tok_embeddings'] = 0
|
| 331 |
-
device_map['language_model.model.embed_tokens'] = 0
|
| 332 |
-
device_map['language_model.output'] = 0
|
| 333 |
-
device_map['language_model.model.norm'] = 0
|
| 334 |
-
device_map['language_model.model.rotary_emb'] = 0
|
| 335 |
-
device_map['language_model.lm_head'] = 0
|
| 336 |
-
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
|
| 337 |
-
return device_map
|
| 338 |
|
| 339 |
-
|
| 340 |
-
device_map = split_model(path)
|
| 341 |
-
model = AutoModel.from_pretrained(
|
| 342 |
-
path,
|
| 343 |
-
torch_dtype=torch.bfloat16,
|
| 344 |
-
load_in_8bit=False,
|
| 345 |
-
low_cpu_mem_usage=True,
|
| 346 |
-
use_flash_attn=True,
|
| 347 |
-
trust_remote_code=True,
|
| 348 |
-
device_map=device_map).eval()
|
| 349 |
-
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
| 350 |
-
generation_config = dict(max_new_tokens=64000, do_sample=True, temperature=0.6, top_p=0.95, repetition_penalty=1.05)
|
| 351 |
|
| 352 |
-
|
| 353 |
-
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 354 |
-
question = '<image>\nSelect the correct option from this question.'
|
| 355 |
-
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
| 356 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
| 361 |
-
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
| 362 |
-
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
|
| 363 |
-
question = '<image>\n<image>\nSelect the correct option from this question.'
|
| 364 |
-
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
|
| 365 |
-
num_patches_list=num_patches_list,
|
| 366 |
-
history=None, return_history=True)
|
| 367 |
-
print(f'User: {question}\nAssistant: {response}')
|
| 368 |
```
|
| 369 |
|
| 370 |
---
|
|
|
|
| 239 |
|
| 240 |
## 4. Usage
|
| 241 |
|
| 242 |
+
### step1. Clone the Repository
|
| 243 |
+
First, clone the repository to your local machine:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
+
```shell
|
| 246 |
+
git clone https://github.com/SkyworkAI/Skywork-R1V.git
|
| 247 |
+
cd skywork-r1v/inference
|
| 248 |
+
```
|
| 249 |
+
### step2. Set Up the Environment
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
+
```shell
|
| 252 |
+
pip install -r requirements.txt
|
| 253 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
+
#### step3. Run the Inference Script
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
+
Prepare your images and questions, and update them to inference_with_transformers.py
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
```shell
|
| 260 |
+
python inference_with_transformers.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
```
|
| 262 |
|
| 263 |
---
|