Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-sa-3.0
|
| 3 |
+
language: ja
|
| 4 |
+
tags:
|
| 5 |
+
- question-answering
|
| 6 |
+
- extractive-qa
|
| 7 |
+
pipeline_tag:
|
| 8 |
+
- None
|
| 9 |
+
datasets:
|
| 10 |
+
- SkelterLabsInc/JaQuAD
|
| 11 |
+
metrics:
|
| 12 |
+
- Exact match
|
| 13 |
+
- F1 score
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# BERT base Japanese - JaQuAD
|
| 17 |
+
|
| 18 |
+
## Description
|
| 19 |
+
|
| 20 |
+
A Japanese Question Answering model fine-tuned on [JaQuAD](https://huggingface.co/datasets/SkelterLabsInc/JaQuAD).
|
| 21 |
+
Please refer [BERT base Japanese](https://huggingface.co/cl-tohoku/bert-base-japanese) for details about the pre-training model.
|
| 22 |
+
The codes for the fine-tuning are available at [SkelterLabsInc/JaQuAD](https://github.com/SkelterLabsInc/JaQuAD)
|
| 23 |
+
|
| 24 |
+
## Evaluation results
|
| 25 |
+
|
| 26 |
+
On the development set.
|
| 27 |
+
|
| 28 |
+
```shell
|
| 29 |
+
{"f1": 77.35, "exact_match": 61.01}
|
| 30 |
+
```
|
| 31 |
+
|
| 32 |
+
On the test set.
|
| 33 |
+
|
| 34 |
+
```shell
|
| 35 |
+
{"f1": 78.92, "exact_match": 63.38}
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
## Usage
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
| 42 |
+
|
| 43 |
+
question = 'アレクサンダー・グラハム・ベルは、どこで生まれたの?'
|
| 44 |
+
context = 'アレクサンダー・グラハム・ベルは、スコットランド生まれの科学者、発明家、工学者である。世界初の>実用的電話の発明で知られている。'
|
| 45 |
+
|
| 46 |
+
model = AutoModelForQuestionAnswering.from_pretrained('SkelterLabsInc/bert-base-japanese-jaquad')
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained('SkelterLabsInc/bert-base-japanese-jaquad')
|
| 48 |
+
|
| 49 |
+
inputs = tokenizer(question, context, add_special_tokens=True, return_tensors="pt")
|
| 50 |
+
input_ids = inputs["input_ids"].tolist()[0]
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
answer_start_scores = outputs.start_logits
|
| 53 |
+
answer_end_scores = outputs.end_logits
|
| 54 |
+
|
| 55 |
+
# Get the most likely beginning of answer with the argmax of the score
|
| 56 |
+
answer_start = torch.argmax(answer_start_scores)
|
| 57 |
+
# Get the most likely end of answer with the argmax of the score
|
| 58 |
+
answer_end = torch.argmax(answer_end_scores) + 1
|
| 59 |
+
|
| 60 |
+
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
|
| 61 |
+
# answer: 'スコットランド'
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## License
|
| 65 |
+
|
| 66 |
+
The fine-tuned model is licensed under the [CC BY-SA 3.0](https://creativecommons.org/licenses/by-sa/3.0/) license.
|
| 67 |
+
|
| 68 |
+
## Citation
|
| 69 |
+
|
| 70 |
+
TBA
|