Commit
·
f12f81b
1
Parent(s):
387337a
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_lunar_lander_v2.zip +3 -0
- ppo_lunar_lander_v2/_stable_baselines3_version +1 -0
- ppo_lunar_lander_v2/data +94 -0
- ppo_lunar_lander_v2/policy.optimizer.pth +3 -0
- ppo_lunar_lander_v2/policy.pth +3 -0
- ppo_lunar_lander_v2/pytorch_variables.pth +3 -0
- ppo_lunar_lander_v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 247.49 +/- 47.87
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f76678d5710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f76678d57a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f76678d5830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76678d58c0>", "_build": "<function ActorCriticPolicy._build at 0x7f76678d5950>", "forward": "<function ActorCriticPolicy.forward at 0x7f76678d59e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f76678d5a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f76678d5b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f76678d5b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f76678d5c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f76678d5cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7667912db0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651901633.3817408, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBRRD3DaTW6a/3dvD3YLrMjm525gwh1MwAAgD8AAIA/AkKZvozGDT63Mpk+O7Yjvo6Ib72WyII7AAAAAAAAAADtpGW+P7IqP1NNvL3gKdm+6lLhvRDjgD0AAAAAAAAAACIVsb6fbWM/mRydvjDC/b6mgli+UypEPQAAAAAAAAAAtmadviXSgj5SbVg98BeRvhhRyb2lJjg7AAAAAAAAAACQWnS++/Z9PyeunL5+xhq/o+0Zvoa6hbwAAAAAAAAAADNxQbzhLKC6FcIcPmHR3rFDvYA6ObIoswAAgD8AAIA/M6bavL7xfj+mF7a9KpcUv8BRvLvHOoI7AAAAAAAAAACAUPa9CqAKu7rto7XSZtKyYirHO/WzyzQAAIA/AACAP2XVpL724wU/MrErvWR92b5UcPS9EtOlPAAAAAAAAAAAk1lqPpQcTT/oiXg+gevnvu6hFD6flQG8AAAAAAAAAABNi9O9HwXvuR5DET78tyYzPATVuz5AHjMAAIA/AAAAAEM2hD4cXqY+DsmZPU/air44LhE+SgRMPQAAAAAAAAAAM/ALva7n9bqtqy49EK+KPNEodrvYwnA9AACAPwAAgD+apE89rai9P7/skD6KzOa8Yj0PPV+Zvj0AAAAAAAAAAJraKT6DPFG8JilAu5rVnjnNcLC9g8qPOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVShAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPIOG/slNcECUhpRSlIwBbJRL9owBdJRHQKfin2B8QZp1fZQoaAZoCWgPQwg6lQwAlWJxQJSGlFKUaBVNBgFoFkdAp+K1bkfcOHV9lChoBmgJaA9DCC0+BcB4Ym9AlIaUUpRoFUvxaBZHQKfizj+717J1fZQoaAZoCWgPQwjNHmgFhi9yQJSGlFKUaBVL7WgWR0Cn40cxKxs3dX2UKGgGaAloD0MIeV2/YLcecUCUhpRSlGgVS95oFkdAp+PZdSl3yXV9lChoBmgJaA9DCKuYSj+hr3BAlIaUUpRoFUvvaBZHQKfkT2eQMhJ1fZQoaAZoCWgPQwgQrRVtjnZuQJSGlFKUaBVL4GgWR0Cn5HMLv1DjdX2UKGgGaAloD0MIcayL22hubkCUhpRSlGgVS+RoFkdAp+WE5sCT2XV9lChoBmgJaA9DCCY3iqw1UW1AlIaUUpRoFU0IAWgWR0Cn5eIMBp6AdX2UKGgGaAloD0MIRDF5AwzAcUCUhpRSlGgVS9hoFkdAp+YcBIWgvnV9lChoBmgJaA9DCNL7xtfemXJAlIaUUpRoFU0gAWgWR0Cn5lonSfDldX2UKGgGaAloD0MI+N10y45OcECUhpRSlGgVS+RoFkdAp+arC79Q43V9lChoBmgJaA9DCP7RN2la0XBAlIaUUpRoFUvraBZHQKfmtHww0wd1fZQoaAZoCWgPQwjfT42XbnJxQJSGlFKUaBVNJwFoFkdAp+evjwQUYnV9lChoBmgJaA9DCN44Kcx7BWFAlIaUUpRoFU3oA2gWR0Cn5/QmNR3vdX2UKGgGaAloD0MIV81zRH6tcECUhpRSlGgVS95oFkdAp+iLjzZpSXV9lChoBmgJaA9DCEeTizGwo3BAlIaUUpRoFUvsaBZHQKfop36AOKB1fZQoaAZoCWgPQwg2lUVh1+1xQJSGlFKUaBVNUQFoFkdAp+jLxTbWVnV9lChoBmgJaA9DCEYHJGFfuHFAlIaUUpRoFU0gAWgWR0Cn6RSqlxffdX2UKGgGaAloD0MI8X9HVKhOGsCUhpRSlGgVS4ZoFkdAp+kdXPqs2nV9lChoBmgJaA9DCHHmV3OAYEJAlIaUUpRoFUvFaBZHQKfpJTUiILx1fZQoaAZoCWgPQwglsg+yrCNxQJSGlFKUaBVNSQFoFkdAp+kthuwX7HV9lChoBmgJaA9DCJyiI7n8sF9AlIaUUpRoFU3oA2gWR0Cn6bGI9C/odX2UKGgGaAloD0MI/g3aq49Rb0CUhpRSlGgVTQABaBZHQKfqR0ZFXq91fZQoaAZoCWgPQwhGBrmLMAExQJSGlFKUaBVLv2gWR0Cn6vuoxYaHdX2UKGgGaAloD0MIx0s3icHocUCUhpRSlGgVTRsBaBZHQKfrFYlIEr51fZQoaAZoCWgPQwgicvp6/gJyQJSGlFKUaBVNLgFoFkdAp+suIl+mWXV9lChoBmgJaA9DCNdtUPutEHBAlIaUUpRoFUvgaBZHQKfsBM6ij+J1fZQoaAZoCWgPQwgWodgKmtFxQJSGlFKUaBVNTwFoFkdAp+w4fZElV3V9lChoBmgJaA9DCIAO8+UF9nBAlIaUUpRoFUvpaBZHQKfsZq1PWQR1fZQoaAZoCWgPQwjvVSsTfhEqwJSGlFKUaBVLl2gWR0Cn7K2Ur08OdX2UKGgGaAloD0MIy7p/LERkcUCUhpRSlGgVS+5oFkdAp+zSyrxRVXV9lChoBmgJaA9DCAAfvHbpenBAlIaUUpRoFU0WAWgWR0Cn7P+sgdOqdX2UKGgGaAloD0MILEfIQB76cECUhpRSlGgVTRABaBZHQKftVQpnYg91fZQoaAZoCWgPQwhiuhCrv79tQJSGlFKUaBVNEAFoFkdAp+1jRhMJyHV9lChoBmgJaA9DCE/qy9LO6XBAlIaUUpRoFU0EAWgWR0Cn7bzgl4TsdX2UKGgGaAloD0MIu0T11oD+cUCUhpRSlGgVTTcBaBZHQKft31ct5D91fZQoaAZoCWgPQwjYZfhPN7NhQJSGlFKUaBVN6ANoFkdAp+5MAmzBynV9lChoBmgJaA9DCDjYmxiSmz5AlIaUUpRoFUuVaBZHQKfuftWMju91fZQoaAZoCWgPQwjxu+mW3ehyQJSGlFKUaBVNBwFoFkdAp/trT6SDAnV9lChoBmgJaA9DCKIo0Cfyr1pAlIaUUpRoFU3oA2gWR0Cn+40xVQyidX2UKGgGaAloD0MINNdppOUJckCUhpRSlGgVTRMBaBZHQKf7wvQnhKl1fZQoaAZoCWgPQwgEOpM21XxsQJSGlFKUaBVNHwFoFkdAp/vYnMMZxnV9lChoBmgJaA9DCMo1BTJ7uHJAlIaUUpRoFU0VAWgWR0Cn/IRS5y2hdX2UKGgGaAloD0MIKo2Y2WcAcUCUhpRSlGgVTQkBaBZHQKf8rxgiNbV1fZQoaAZoCWgPQwjeVnpttqFwQJSGlFKUaBVL+WgWR0Cn/LLronrqdX2UKGgGaAloD0MINxjqsAKCckCUhpRSlGgVS/toFkdAp/z9VktmMHV9lChoBmgJaA9DCPpFCfoLp3BAlIaUUpRoFUv1aBZHQKf9QHdGiHt1fZQoaAZoCWgPQwi62/XSlJJuQJSGlFKUaBVL2WgWR0Cn/VDZ+QU6dX2UKGgGaAloD0MI2uVbH1aMbkCUhpRSlGgVTQwBaBZHQKf9gbZvkzZ1fZQoaAZoCWgPQwiILT2a6jFzQJSGlFKUaBVNMAFoFkdAp/2OQfZElXV9lChoBmgJaA9DCOKReHk6zW9AlIaUUpRoFUv8aBZHQKf9qSdOIqN1fZQoaAZoCWgPQwjKbfsedblwQJSGlFKUaBVNiQJoFkdAp/3fnGKhtnV9lChoBmgJaA9DCAT+8PPf9XFAlIaUUpRoFUvnaBZHQKf+CWJJoTR1fZQoaAZoCWgPQwjnpzgOPExyQJSGlFKUaBVNFgFoFkdAp/59alk6LnV9lChoBmgJaA9DCDtypDOwaHFAlIaUUpRoFU0QAWgWR0Cn/ydx6v7ndX2UKGgGaAloD0MIUdzxJj+2b0CUhpRSlGgVS/RoFkdAp/8vsAvL5nV9lChoBmgJaA9DCIcW2c43gnJAlIaUUpRoFUv8aBZHQKf/N0ihWYF1fZQoaAZoCWgPQwgX8DLDBpZxQJSGlFKUaBVNIgFoFkdAp/+HgpBomHV9lChoBmgJaA9DCJgUH5+Q9ShAlIaUUpRoFUvVaBZHQKf/lVTaTOh1fZQoaAZoCWgPQwg4o+arpJFyQJSGlFKUaBVL6mgWR0Cn/7UiyIHkdX2UKGgGaAloD0MIZd8VwX+fcUCUhpRSlGgVS+1oFkdAqAA0kfLcK3V9lChoBmgJaA9DCJLn+j4cQHFAlIaUUpRoFU0QAWgWR0CoAGW4/eLvdX2UKGgGaAloD0MIR+NQv0t8cUCUhpRSlGgVS+RoFkdAqAChX2dupHV9lChoBmgJaA9DCKQ2cXL/ZXBAlIaUUpRoFUv4aBZHQKgAtyGzru91fZQoaAZoCWgPQwgUs14M5aVuQJSGlFKUaBVL7WgWR0CoAOwQ176YdX2UKGgGaAloD0MINxyWBr5jcUCUhpRSlGgVTRMBaBZHQKgBAUqx1Pp1fZQoaAZoCWgPQwiSdM3km51wQJSGlFKUaBVNCAFoFkdAqAEj8tPHk3V9lChoBmgJaA9DCFoPXybK3HBAlIaUUpRoFUvzaBZHQKgBxaM72ct1fZQoaAZoCWgPQwiFX+rnzd9wQJSGlFKUaBVNGwFoFkdAqAHfgrH2iHV9lChoBmgJaA9DCF5m2Cjr3XBAlIaUUpRoFUvdaBZHQKgChv1DjR51fZQoaAZoCWgPQwjbp+MxAxJtQJSGlFKUaBVL+2gWR0CoApnnuAqedX2UKGgGaAloD0MIRpiiXJqYbkCUhpRSlGgVTQQBaBZHQKgCw5U96kZ1fZQoaAZoCWgPQwjJAFDFzQZyQJSGlFKUaBVNDQFoFkdAqALV/rjYI3V9lChoBmgJaA9DCN4+q8yUknFAlIaUUpRoFUvwaBZHQKgC/6be/Hp1fZQoaAZoCWgPQwja5PBJJ6dvQJSGlFKUaBVNCwFoFkdAqAM90NjLCHV9lChoBmgJaA9DCGoy420l23BAlIaUUpRoFU0BAWgWR0CoA/1pTMq0dX2UKGgGaAloD0MINX7hlSTJbUCUhpRSlGgVS+FoFkdAqAQtaGHpKXV9lChoBmgJaA9DCFfNc0S+UG9AlIaUUpRoFUvsaBZHQKgEPomG/N91fZQoaAZoCWgPQwicNXhflTdGQJSGlFKUaBVLsmgWR0CoBIPPC2tudX2UKGgGaAloD0MICVG+oAXIckCUhpRSlGgVTTEBaBZHQKgEhCsOoYN1fZQoaAZoCWgPQwhsy4CzFO9wQJSGlFKUaBVNFgFoFkdAqASdVinYQXV9lChoBmgJaA9DCMHicObXdXFAlIaUUpRoFUv3aBZHQKgEp0knkT91fZQoaAZoCWgPQwhk6UMXVBpzQJSGlFKUaBVL7WgWR0CoBSF0gbIcdX2UKGgGaAloD0MI/dr66b9VbUCUhpRSlGgVS/BoFkdAqAXjQw9JSXV9lChoBmgJaA9DCK0VbY5zQW5AlIaUUpRoFUvWaBZHQKgF/QwblzV1fZQoaAZoCWgPQwhFZ5lFaMRxQJSGlFKUaBVNhgFoFkdAqAYG2qkuYnV9lChoBmgJaA9DCE1p/S2B225AlIaUUpRoFUvkaBZHQKgGBa0QbuN1fZQoaAZoCWgPQwgTZtr+VX5xQJSGlFKUaBVL+WgWR0CoBha+evpydX2UKGgGaAloD0MINj/+0iJlcUCUhpRSlGgVTQIBaBZHQKgGUm65Gz91fZQoaAZoCWgPQwg+Xd2x2IZxQJSGlFKUaBVL/WgWR0CoBrM0xdpqdX2UKGgGaAloD0MIVcITen28ckCUhpRSlGgVS/toFkdAqAdkRg7YCnV9lChoBmgJaA9DCE60q5DypG5AlIaUUpRoFUvlaBZHQKgHkn2Iwdt1fZQoaAZoCWgPQwjAl8KDZp80QJSGlFKUaBVL5mgWR0CoB7LqdH2AdX2UKGgGaAloD0MIp3Ub1H4ObECUhpRSlGgVTQYBaBZHQKgHxVsk6cR1fZQoaAZoCWgPQwjf36C9+j5wQJSGlFKUaBVL/WgWR0CoCAxusLfDdX2UKGgGaAloD0MIV9C0xAqbcUCUhpRSlGgVTSIBaBZHQKgIF114gRt1fZQoaAZoCWgPQwivXdpwWAoUwJSGlFKUaBVLpmgWR0CoCDp48loldX2UKGgGaAloD0MI8PeL2RKTcECUhpRSlGgVS/xoFkdAqAiUXFcY7HV9lChoBmgJaA9DCAu45/nTbjdAlIaUUpRoFUvFaBZHQKgIvb0OEuh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 775, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_lunar_lander_v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c36016ad024d6289c3a096cc48995a1aaf1bf9d30c42538d6418902836f81a6
|
3 |
+
size 144039
|
ppo_lunar_lander_v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_lunar_lander_v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f76678d5710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f76678d57a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f76678d5830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f76678d58c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f76678d5950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f76678d59e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f76678d5a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f76678d5b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f76678d5b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f76678d5c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f76678d5cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7667912db0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651901633.3817408,
|
51 |
+
"learning_rate": 0.0001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIBRRD3DaTW6a/3dvD3YLrMjm525gwh1MwAAgD8AAIA/AkKZvozGDT63Mpk+O7Yjvo6Ib72WyII7AAAAAAAAAADtpGW+P7IqP1NNvL3gKdm+6lLhvRDjgD0AAAAAAAAAACIVsb6fbWM/mRydvjDC/b6mgli+UypEPQAAAAAAAAAAtmadviXSgj5SbVg98BeRvhhRyb2lJjg7AAAAAAAAAACQWnS++/Z9PyeunL5+xhq/o+0Zvoa6hbwAAAAAAAAAADNxQbzhLKC6FcIcPmHR3rFDvYA6ObIoswAAgD8AAIA/M6bavL7xfj+mF7a9KpcUv8BRvLvHOoI7AAAAAAAAAACAUPa9CqAKu7rto7XSZtKyYirHO/WzyzQAAIA/AACAP2XVpL724wU/MrErvWR92b5UcPS9EtOlPAAAAAAAAAAAk1lqPpQcTT/oiXg+gevnvu6hFD6flQG8AAAAAAAAAABNi9O9HwXvuR5DET78tyYzPATVuz5AHjMAAIA/AAAAAEM2hD4cXqY+DsmZPU/air44LhE+SgRMPQAAAAAAAAAAM/ALva7n9bqtqy49EK+KPNEodrvYwnA9AACAPwAAgD+apE89rai9P7/skD6KzOa8Yj0PPV+Zvj0AAAAAAAAAAJraKT6DPFG8JilAu5rVnjnNcLC9g8qPOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVShAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPIOG/slNcECUhpRSlIwBbJRL9owBdJRHQKfin2B8QZp1fZQoaAZoCWgPQwg6lQwAlWJxQJSGlFKUaBVNBgFoFkdAp+K1bkfcOHV9lChoBmgJaA9DCC0+BcB4Ym9AlIaUUpRoFUvxaBZHQKfizj+717J1fZQoaAZoCWgPQwjNHmgFhi9yQJSGlFKUaBVL7WgWR0Cn40cxKxs3dX2UKGgGaAloD0MIeV2/YLcecUCUhpRSlGgVS95oFkdAp+PZdSl3yXV9lChoBmgJaA9DCKuYSj+hr3BAlIaUUpRoFUvvaBZHQKfkT2eQMhJ1fZQoaAZoCWgPQwgQrRVtjnZuQJSGlFKUaBVL4GgWR0Cn5HMLv1DjdX2UKGgGaAloD0MIcayL22hubkCUhpRSlGgVS+RoFkdAp+WE5sCT2XV9lChoBmgJaA9DCCY3iqw1UW1AlIaUUpRoFU0IAWgWR0Cn5eIMBp6AdX2UKGgGaAloD0MIRDF5AwzAcUCUhpRSlGgVS9hoFkdAp+YcBIWgvnV9lChoBmgJaA9DCNL7xtfemXJAlIaUUpRoFU0gAWgWR0Cn5lonSfDldX2UKGgGaAloD0MI+N10y45OcECUhpRSlGgVS+RoFkdAp+arC79Q43V9lChoBmgJaA9DCP7RN2la0XBAlIaUUpRoFUvraBZHQKfmtHww0wd1fZQoaAZoCWgPQwjfT42XbnJxQJSGlFKUaBVNJwFoFkdAp+evjwQUYnV9lChoBmgJaA9DCN44Kcx7BWFAlIaUUpRoFU3oA2gWR0Cn5/QmNR3vdX2UKGgGaAloD0MIV81zRH6tcECUhpRSlGgVS95oFkdAp+iLjzZpSXV9lChoBmgJaA9DCEeTizGwo3BAlIaUUpRoFUvsaBZHQKfop36AOKB1fZQoaAZoCWgPQwg2lUVh1+1xQJSGlFKUaBVNUQFoFkdAp+jLxTbWVnV9lChoBmgJaA9DCEYHJGFfuHFAlIaUUpRoFU0gAWgWR0Cn6RSqlxffdX2UKGgGaAloD0MI8X9HVKhOGsCUhpRSlGgVS4ZoFkdAp+kdXPqs2nV9lChoBmgJaA9DCHHmV3OAYEJAlIaUUpRoFUvFaBZHQKfpJTUiILx1fZQoaAZoCWgPQwglsg+yrCNxQJSGlFKUaBVNSQFoFkdAp+kthuwX7HV9lChoBmgJaA9DCJyiI7n8sF9AlIaUUpRoFU3oA2gWR0Cn6bGI9C/odX2UKGgGaAloD0MI/g3aq49Rb0CUhpRSlGgVTQABaBZHQKfqR0ZFXq91fZQoaAZoCWgPQwhGBrmLMAExQJSGlFKUaBVLv2gWR0Cn6vuoxYaHdX2UKGgGaAloD0MIx0s3icHocUCUhpRSlGgVTRsBaBZHQKfrFYlIEr51fZQoaAZoCWgPQwgicvp6/gJyQJSGlFKUaBVNLgFoFkdAp+suIl+mWXV9lChoBmgJaA9DCNdtUPutEHBAlIaUUpRoFUvgaBZHQKfsBM6ij+J1fZQoaAZoCWgPQwgWodgKmtFxQJSGlFKUaBVNTwFoFkdAp+w4fZElV3V9lChoBmgJaA9DCIAO8+UF9nBAlIaUUpRoFUvpaBZHQKfsZq1PWQR1fZQoaAZoCWgPQwjvVSsTfhEqwJSGlFKUaBVLl2gWR0Cn7K2Ur08OdX2UKGgGaAloD0MIy7p/LERkcUCUhpRSlGgVS+5oFkdAp+zSyrxRVXV9lChoBmgJaA9DCAAfvHbpenBAlIaUUpRoFU0WAWgWR0Cn7P+sgdOqdX2UKGgGaAloD0MILEfIQB76cECUhpRSlGgVTRABaBZHQKftVQpnYg91fZQoaAZoCWgPQwhiuhCrv79tQJSGlFKUaBVNEAFoFkdAp+1jRhMJyHV9lChoBmgJaA9DCE/qy9LO6XBAlIaUUpRoFU0EAWgWR0Cn7bzgl4TsdX2UKGgGaAloD0MIu0T11oD+cUCUhpRSlGgVTTcBaBZHQKft31ct5D91fZQoaAZoCWgPQwjYZfhPN7NhQJSGlFKUaBVN6ANoFkdAp+5MAmzBynV9lChoBmgJaA9DCDjYmxiSmz5AlIaUUpRoFUuVaBZHQKfuftWMju91fZQoaAZoCWgPQwjxu+mW3ehyQJSGlFKUaBVNBwFoFkdAp/trT6SDAnV9lChoBmgJaA9DCKIo0Cfyr1pAlIaUUpRoFU3oA2gWR0Cn+40xVQyidX2UKGgGaAloD0MINNdppOUJckCUhpRSlGgVTRMBaBZHQKf7wvQnhKl1fZQoaAZoCWgPQwgEOpM21XxsQJSGlFKUaBVNHwFoFkdAp/vYnMMZxnV9lChoBmgJaA9DCMo1BTJ7uHJAlIaUUpRoFU0VAWgWR0Cn/IRS5y2hdX2UKGgGaAloD0MIKo2Y2WcAcUCUhpRSlGgVTQkBaBZHQKf8rxgiNbV1fZQoaAZoCWgPQwjeVnpttqFwQJSGlFKUaBVL+WgWR0Cn/LLronrqdX2UKGgGaAloD0MINxjqsAKCckCUhpRSlGgVS/toFkdAp/z9VktmMHV9lChoBmgJaA9DCPpFCfoLp3BAlIaUUpRoFUv1aBZHQKf9QHdGiHt1fZQoaAZoCWgPQwi62/XSlJJuQJSGlFKUaBVL2WgWR0Cn/VDZ+QU6dX2UKGgGaAloD0MI2uVbH1aMbkCUhpRSlGgVTQwBaBZHQKf9gbZvkzZ1fZQoaAZoCWgPQwiILT2a6jFzQJSGlFKUaBVNMAFoFkdAp/2OQfZElXV9lChoBmgJaA9DCOKReHk6zW9AlIaUUpRoFUv8aBZHQKf9qSdOIqN1fZQoaAZoCWgPQwjKbfsedblwQJSGlFKUaBVNiQJoFkdAp/3fnGKhtnV9lChoBmgJaA9DCAT+8PPf9XFAlIaUUpRoFUvnaBZHQKf+CWJJoTR1fZQoaAZoCWgPQwjnpzgOPExyQJSGlFKUaBVNFgFoFkdAp/59alk6LnV9lChoBmgJaA9DCDtypDOwaHFAlIaUUpRoFU0QAWgWR0Cn/ydx6v7ndX2UKGgGaAloD0MIUdzxJj+2b0CUhpRSlGgVS/RoFkdAp/8vsAvL5nV9lChoBmgJaA9DCIcW2c43gnJAlIaUUpRoFUv8aBZHQKf/N0ihWYF1fZQoaAZoCWgPQwgX8DLDBpZxQJSGlFKUaBVNIgFoFkdAp/+HgpBomHV9lChoBmgJaA9DCJgUH5+Q9ShAlIaUUpRoFUvVaBZHQKf/lVTaTOh1fZQoaAZoCWgPQwg4o+arpJFyQJSGlFKUaBVL6mgWR0Cn/7UiyIHkdX2UKGgGaAloD0MIZd8VwX+fcUCUhpRSlGgVS+1oFkdAqAA0kfLcK3V9lChoBmgJaA9DCJLn+j4cQHFAlIaUUpRoFU0QAWgWR0CoAGW4/eLvdX2UKGgGaAloD0MIR+NQv0t8cUCUhpRSlGgVS+RoFkdAqAChX2dupHV9lChoBmgJaA9DCKQ2cXL/ZXBAlIaUUpRoFUv4aBZHQKgAtyGzru91fZQoaAZoCWgPQwgUs14M5aVuQJSGlFKUaBVL7WgWR0CoAOwQ176YdX2UKGgGaAloD0MINxyWBr5jcUCUhpRSlGgVTRMBaBZHQKgBAUqx1Pp1fZQoaAZoCWgPQwiSdM3km51wQJSGlFKUaBVNCAFoFkdAqAEj8tPHk3V9lChoBmgJaA9DCFoPXybK3HBAlIaUUpRoFUvzaBZHQKgBxaM72ct1fZQoaAZoCWgPQwiFX+rnzd9wQJSGlFKUaBVNGwFoFkdAqAHfgrH2iHV9lChoBmgJaA9DCF5m2Cjr3XBAlIaUUpRoFUvdaBZHQKgChv1DjR51fZQoaAZoCWgPQwjbp+MxAxJtQJSGlFKUaBVL+2gWR0CoApnnuAqedX2UKGgGaAloD0MIRpiiXJqYbkCUhpRSlGgVTQQBaBZHQKgCw5U96kZ1fZQoaAZoCWgPQwjJAFDFzQZyQJSGlFKUaBVNDQFoFkdAqALV/rjYI3V9lChoBmgJaA9DCN4+q8yUknFAlIaUUpRoFUvwaBZHQKgC/6be/Hp1fZQoaAZoCWgPQwja5PBJJ6dvQJSGlFKUaBVNCwFoFkdAqAM90NjLCHV9lChoBmgJaA9DCGoy420l23BAlIaUUpRoFU0BAWgWR0CoA/1pTMq0dX2UKGgGaAloD0MINX7hlSTJbUCUhpRSlGgVS+FoFkdAqAQtaGHpKXV9lChoBmgJaA9DCFfNc0S+UG9AlIaUUpRoFUvsaBZHQKgEPomG/N91fZQoaAZoCWgPQwicNXhflTdGQJSGlFKUaBVLsmgWR0CoBIPPC2tudX2UKGgGaAloD0MICVG+oAXIckCUhpRSlGgVTTEBaBZHQKgEhCsOoYN1fZQoaAZoCWgPQwhsy4CzFO9wQJSGlFKUaBVNFgFoFkdAqASdVinYQXV9lChoBmgJaA9DCMHicObXdXFAlIaUUpRoFUv3aBZHQKgEp0knkT91fZQoaAZoCWgPQwhk6UMXVBpzQJSGlFKUaBVL7WgWR0CoBSF0gbIcdX2UKGgGaAloD0MI/dr66b9VbUCUhpRSlGgVS/BoFkdAqAXjQw9JSXV9lChoBmgJaA9DCK0VbY5zQW5AlIaUUpRoFUvWaBZHQKgF/QwblzV1fZQoaAZoCWgPQwhFZ5lFaMRxQJSGlFKUaBVNhgFoFkdAqAYG2qkuYnV9lChoBmgJaA9DCE1p/S2B225AlIaUUpRoFUvkaBZHQKgGBa0QbuN1fZQoaAZoCWgPQwgTZtr+VX5xQJSGlFKUaBVL+WgWR0CoBha+evpydX2UKGgGaAloD0MINj/+0iJlcUCUhpRSlGgVTQIBaBZHQKgGUm65Gz91fZQoaAZoCWgPQwg+Xd2x2IZxQJSGlFKUaBVL/WgWR0CoBrM0xdpqdX2UKGgGaAloD0MIVcITen28ckCUhpRSlGgVS/toFkdAqAdkRg7YCnV9lChoBmgJaA9DCE60q5DypG5AlIaUUpRoFUvlaBZHQKgHkn2Iwdt1fZQoaAZoCWgPQwjAl8KDZp80QJSGlFKUaBVL5mgWR0CoB7LqdH2AdX2UKGgGaAloD0MIp3Ub1H4ObECUhpRSlGgVTQYBaBZHQKgHxVsk6cR1fZQoaAZoCWgPQwjf36C9+j5wQJSGlFKUaBVL/WgWR0CoCAxusLfDdX2UKGgGaAloD0MIV9C0xAqbcUCUhpRSlGgVTSIBaBZHQKgIF114gRt1fZQoaAZoCWgPQwivXdpwWAoUwJSGlFKUaBVLpmgWR0CoCDp48loldX2UKGgGaAloD0MI8PeL2RKTcECUhpRSlGgVS/xoFkdAqAiUXFcY7HV9lChoBmgJaA9DCAu45/nTbjdAlIaUUpRoFUvFaBZHQKgIvb0OEuh1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 775,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 5,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_lunar_lander_v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78e528d9a20cf5f0f0632f125d64893e37975bd4bd912aabd649c0fe6be93a11
|
3 |
+
size 84893
|
ppo_lunar_lander_v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e30d6d54194ab0f41fcbaa6138848034e5963891c18d9151ab7fab512597e892
|
3 |
+
size 43201
|
ppo_lunar_lander_v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunar_lander_v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41f41c7de1298bf0f49b28fd60c66c6db76f1ddabe0f4f66a96d43c954f4edd8
|
3 |
+
size 213713
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 247.4894425928867, "std_reward": 47.868291691751516, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T06:07:32.868867"}
|