--- library_name: transformers language: - hi license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - Shreyask09/synthetic-speaker-diarization-dataset-hindi model-index: - name: speaker-segmentation-fine-tuned-hindi results: [] --- # speaker-segmentation-fine-tuned-hindi This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the Shreyask09/synthetic-speaker-diarization-dataset-hindi dataset. It achieves the following results on the evaluation set: - Loss: 0.3013 - Model Preparation Time: 0.004 - Der: 0.1018 - False Alarm: 0.0131 - Missed Detection: 0.0241 - Confusion: 0.0646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3506 | 1.0 | 219 | 0.3386 | 0.004 | 0.1165 | 0.0156 | 0.0288 | 0.0722 | | 0.2898 | 2.0 | 438 | 0.3218 | 0.004 | 0.1080 | 0.0131 | 0.0267 | 0.0682 | | 0.2479 | 3.0 | 657 | 0.3004 | 0.004 | 0.1034 | 0.0134 | 0.0245 | 0.0655 | | 0.2413 | 4.0 | 876 | 0.3027 | 0.004 | 0.1020 | 0.0129 | 0.0244 | 0.0647 | | 0.2506 | 5.0 | 1095 | 0.3013 | 0.004 | 0.1018 | 0.0131 | 0.0241 | 0.0646 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0