Shekswess commited on
Commit
5c05abf
·
verified ·
1 Parent(s): d90ef9d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +215 -0
README.md ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail++
3
+ tags:
4
+ - text-to-image
5
+ - stable-diffusion
6
+ ---
7
+ # SD-XL 1.0-base Model Card
8
+ ![row01](01.png)
9
+
10
+ ## Model
11
+
12
+ ![pipeline](pipeline.png)
13
+
14
+ [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion:
15
+ In a first step, the base model is used to generate (noisy) latents,
16
+ which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps.
17
+ Note that the base model can be used as a standalone module.
18
+
19
+ Alternatively, we can use a two-stage pipeline as follows:
20
+ First, the base model is used to generate latents of the desired output size.
21
+ In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img")
22
+ to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations.
23
+
24
+ Source code is available at https://github.com/Stability-AI/generative-models .
25
+
26
+ ### Model Description
27
+
28
+ - **Developed by:** Stability AI
29
+ - **Model type:** Diffusion-based text-to-image generative model
30
+ - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
31
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)).
32
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952).
33
+
34
+ ### Model Sources
35
+
36
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time.
37
+ [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference.
38
+
39
+ - **Repository:** https://github.com/Stability-AI/generative-models
40
+ - **Demo:** https://clipdrop.co/stable-diffusion
41
+
42
+
43
+ ## Evaluation
44
+ ![comparison](comparison.png)
45
+ The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1.
46
+ The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance.
47
+
48
+
49
+ ### 🧨 Diffusers
50
+
51
+ Make sure to upgrade diffusers to >= 0.19.0:
52
+ ```
53
+ pip install diffusers --upgrade
54
+ ```
55
+
56
+ In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
57
+ ```
58
+ pip install invisible_watermark transformers accelerate safetensors
59
+ ```
60
+
61
+ To just use the base model, you can run:
62
+
63
+ ```py
64
+ from diffusers import DiffusionPipeline
65
+ import torch
66
+
67
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
68
+ pipe.to("cuda")
69
+
70
+ # if using torch < 2.0
71
+ # pipe.enable_xformers_memory_efficient_attention()
72
+
73
+ prompt = "An astronaut riding a green horse"
74
+
75
+ images = pipe(prompt=prompt).images[0]
76
+ ```
77
+
78
+ To use the whole base + refiner pipeline as an ensemble of experts you can run:
79
+
80
+ ```py
81
+ from diffusers import DiffusionPipeline
82
+ import torch
83
+
84
+ # load both base & refiner
85
+ base = DiffusionPipeline.from_pretrained(
86
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
87
+ )
88
+ base.to("cuda")
89
+ refiner = DiffusionPipeline.from_pretrained(
90
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
91
+ text_encoder_2=base.text_encoder_2,
92
+ vae=base.vae,
93
+ torch_dtype=torch.float16,
94
+ use_safetensors=True,
95
+ variant="fp16",
96
+ )
97
+ refiner.to("cuda")
98
+
99
+ # Define how many steps and what % of steps to be run on each experts (80/20) here
100
+ n_steps = 40
101
+ high_noise_frac = 0.8
102
+
103
+ prompt = "A majestic lion jumping from a big stone at night"
104
+
105
+ # run both experts
106
+ image = base(
107
+ prompt=prompt,
108
+ num_inference_steps=n_steps,
109
+ denoising_end=high_noise_frac,
110
+ output_type="latent",
111
+ ).images
112
+ image = refiner(
113
+ prompt=prompt,
114
+ num_inference_steps=n_steps,
115
+ denoising_start=high_noise_frac,
116
+ image=image,
117
+ ).images[0]
118
+ ```
119
+
120
+ When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
121
+ ```py
122
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
123
+ ```
124
+
125
+ If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
126
+ instead of `.to("cuda")`:
127
+
128
+ ```diff
129
+ - pipe.to("cuda")
130
+ + pipe.enable_model_cpu_offload()
131
+ ```
132
+
133
+ For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
134
+
135
+ ### Optimum
136
+ [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
137
+
138
+ #### OpenVINO
139
+
140
+ To install Optimum with the dependencies required for OpenVINO :
141
+
142
+ ```bash
143
+ pip install optimum[openvino]
144
+ ```
145
+
146
+ To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
147
+
148
+ ```diff
149
+ - from diffusers import StableDiffusionXLPipeline
150
+ + from optimum.intel import OVStableDiffusionXLPipeline
151
+
152
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
153
+ - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
154
+ + pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id)
155
+ prompt = "A majestic lion jumping from a big stone at night"
156
+ image = pipeline(prompt).images[0]
157
+ ```
158
+
159
+ You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl).
160
+
161
+
162
+ #### ONNX
163
+
164
+ To install Optimum with the dependencies required for ONNX Runtime inference :
165
+
166
+ ```bash
167
+ pip install optimum[onnxruntime]
168
+ ```
169
+
170
+ To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
171
+
172
+ ```diff
173
+ - from diffusers import StableDiffusionXLPipeline
174
+ + from optimum.onnxruntime import ORTStableDiffusionXLPipeline
175
+
176
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
177
+ - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
178
+ + pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id)
179
+ prompt = "A majestic lion jumping from a big stone at night"
180
+ image = pipeline(prompt).images[0]
181
+ ```
182
+
183
+ You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl).
184
+
185
+
186
+ ## Uses
187
+
188
+ ### Direct Use
189
+
190
+ The model is intended for research purposes only. Possible research areas and tasks include
191
+
192
+ - Generation of artworks and use in design and other artistic processes.
193
+ - Applications in educational or creative tools.
194
+ - Research on generative models.
195
+ - Safe deployment of models which have the potential to generate harmful content.
196
+ - Probing and understanding the limitations and biases of generative models.
197
+
198
+ Excluded uses are described below.
199
+
200
+ ### Out-of-Scope Use
201
+
202
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
203
+
204
+ ## Limitations and Bias
205
+
206
+ ### Limitations
207
+
208
+ - The model does not achieve perfect photorealism
209
+ - The model cannot render legible text
210
+ - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
211
+ - Faces and people in general may not be generated properly.
212
+ - The autoencoding part of the model is lossy.
213
+
214
+ ### Bias
215
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.