Update README.md
Browse files
README.md
CHANGED
@@ -3,8 +3,10 @@ license: openrail++
|
|
3 |
tags:
|
4 |
- text-to-image
|
5 |
- stable-diffusion
|
|
|
|
|
6 |
---
|
7 |
-
# SD-XL 1.0-base Model Card
|
8 |

|
9 |
|
10 |
## Model
|
@@ -46,142 +48,21 @@ The chart above evaluates user preference for SDXL (with and without refinement)
|
|
46 |
The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance.
|
47 |
|
48 |
|
49 |
-
###
|
50 |
-
|
51 |
-
Make sure to upgrade diffusers to >= 0.19.0:
|
52 |
-
```
|
53 |
-
pip install diffusers --upgrade
|
54 |
-
```
|
55 |
-
|
56 |
-
In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
|
57 |
-
```
|
58 |
-
pip install invisible_watermark transformers accelerate safetensors
|
59 |
-
```
|
60 |
-
|
61 |
-
To just use the base model, you can run:
|
62 |
-
|
63 |
-
```py
|
64 |
-
from diffusers import DiffusionPipeline
|
65 |
-
import torch
|
66 |
-
|
67 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
68 |
-
pipe.to("cuda")
|
69 |
-
|
70 |
-
# if using torch < 2.0
|
71 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
72 |
-
|
73 |
-
prompt = "An astronaut riding a green horse"
|
74 |
-
|
75 |
-
images = pipe(prompt=prompt).images[0]
|
76 |
-
```
|
77 |
-
|
78 |
-
To use the whole base + refiner pipeline as an ensemble of experts you can run:
|
79 |
|
80 |
```py
|
81 |
-
from diffusers import
|
82 |
-
import
|
83 |
-
|
84 |
-
# load both base & refiner
|
85 |
-
base = DiffusionPipeline.from_pretrained(
|
86 |
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
87 |
-
)
|
88 |
-
base.to("cuda")
|
89 |
-
refiner = DiffusionPipeline.from_pretrained(
|
90 |
-
"stabilityai/stable-diffusion-xl-refiner-1.0",
|
91 |
-
text_encoder_2=base.text_encoder_2,
|
92 |
-
vae=base.vae,
|
93 |
-
torch_dtype=torch.float16,
|
94 |
-
use_safetensors=True,
|
95 |
-
variant="fp16",
|
96 |
-
)
|
97 |
-
refiner.to("cuda")
|
98 |
-
|
99 |
-
# Define how many steps and what % of steps to be run on each experts (80/20) here
|
100 |
-
n_steps = 40
|
101 |
-
high_noise_frac = 0.8
|
102 |
-
|
103 |
-
prompt = "A majestic lion jumping from a big stone at night"
|
104 |
-
|
105 |
-
# run both experts
|
106 |
-
image = base(
|
107 |
-
prompt=prompt,
|
108 |
-
num_inference_steps=n_steps,
|
109 |
-
denoising_end=high_noise_frac,
|
110 |
-
output_type="latent",
|
111 |
-
).images
|
112 |
-
image = refiner(
|
113 |
-
prompt=prompt,
|
114 |
-
num_inference_steps=n_steps,
|
115 |
-
denoising_start=high_noise_frac,
|
116 |
-
image=image,
|
117 |
-
).images[0]
|
118 |
-
```
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
123 |
-
```
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
```diff
|
129 |
-
- pipe.to("cuda")
|
130 |
-
+ pipe.enable_model_cpu_offload()
|
131 |
```
|
132 |
|
133 |
For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
|
134 |
|
135 |
-
### Optimum
|
136 |
-
[Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
|
137 |
-
|
138 |
-
#### OpenVINO
|
139 |
-
|
140 |
-
To install Optimum with the dependencies required for OpenVINO :
|
141 |
-
|
142 |
-
```bash
|
143 |
-
pip install optimum[openvino]
|
144 |
-
```
|
145 |
-
|
146 |
-
To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
|
147 |
-
|
148 |
-
```diff
|
149 |
-
- from diffusers import StableDiffusionXLPipeline
|
150 |
-
+ from optimum.intel import OVStableDiffusionXLPipeline
|
151 |
-
|
152 |
-
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
153 |
-
- pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
|
154 |
-
+ pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id)
|
155 |
-
prompt = "A majestic lion jumping from a big stone at night"
|
156 |
-
image = pipeline(prompt).images[0]
|
157 |
-
```
|
158 |
-
|
159 |
-
You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl).
|
160 |
-
|
161 |
-
|
162 |
-
#### ONNX
|
163 |
-
|
164 |
-
To install Optimum with the dependencies required for ONNX Runtime inference :
|
165 |
-
|
166 |
-
```bash
|
167 |
-
pip install optimum[onnxruntime]
|
168 |
-
```
|
169 |
-
|
170 |
-
To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
|
171 |
-
|
172 |
-
```diff
|
173 |
-
- from diffusers import StableDiffusionXLPipeline
|
174 |
-
+ from optimum.onnxruntime import ORTStableDiffusionXLPipeline
|
175 |
-
|
176 |
-
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
177 |
-
- pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
|
178 |
-
+ pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id)
|
179 |
-
prompt = "A majestic lion jumping from a big stone at night"
|
180 |
-
image = pipeline(prompt).images[0]
|
181 |
-
```
|
182 |
-
|
183 |
-
You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl).
|
184 |
-
|
185 |
|
186 |
## Uses
|
187 |
|
@@ -212,4 +93,7 @@ The model was not trained to be factual or true representations of people or eve
|
|
212 |
- The autoencoding part of the model is lossy.
|
213 |
|
214 |
### Bias
|
215 |
-
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
- text-to-image
|
5 |
- stable-diffusion
|
6 |
+
- Neuron
|
7 |
+
- Inferentia
|
8 |
---
|
9 |
+
# SD-XL 1.0-base Model Card - Neuron
|
10 |

|
11 |
|
12 |
## Model
|
|
|
48 |
The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance.
|
49 |
|
50 |
|
51 |
+
### Usage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
```py
|
54 |
+
from diffusers import DPMSolverMultistepScheduler
|
55 |
+
from optimum.neuron import NeuronStableDiffusionXLPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
pipeline = NeuronStableDiffusionXLPipeline.from_pretrained("Shekswess/stable-diffusion-xl-base-1.0-neuron", device_ids=[0, 1])
|
58 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
|
|
|
|
59 |
|
60 |
+
prompt = "A swirling beautiful exploding scene of magical wonders and surreal ideas and objects with portraits of beautiful woman with silk back to camera, flowers, light, cosmic wonder, nebula, high-resolution"
|
61 |
+
image = pipeline(prompt=prompt).images[0].save("output.png)
|
|
|
|
|
|
|
|
|
62 |
```
|
63 |
|
64 |
For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
## Uses
|
68 |
|
|
|
93 |
- The autoencoding part of the model is lossy.
|
94 |
|
95 |
### Bias
|
96 |
+
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.
|
97 |
+
|
98 |
+
## Original Model
|
99 |
+
[Model](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|