--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:150 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: Do you provide support 24/7? sentences: - 'How can we get started with your DevOps solutions? Getting started is easy. Contact us through our website. We''ll schedule a consultation to discuss your needs, evaluate your current infrastructure, and propose a customized DevOps solution designed to achieve your goals.' - 'This is our Portfolio Introducing the world of Housing Finance& Banking Firm. Corporate Website with 10 regional languages in India with analytics and user personalization and Dashboard for Regional Managers, Sales Agents, etc. to manage the Builder Requests, approve/deny Properties, manage visits and appointments, manage leads, etc. Introducing the world of Global Automotive Brand.We have implemented a Multi Locale Multilingual Omnichannel platform for Royal Enfield. The platform supports public websites, customer portals, internal portals, business applications for over 35+ different locations all over the world. Developed Digital Platform for Students, Guardians, Teachers, Tutors, with AI/ML in collaboration with Successive Technologies Inc, USA. Cloud, Dev-Sec-Ops & Data Governance Managing cloud provisioning and modernization alongside automated infrastructure, event-driven microservices, containerization, DevOps, cybersecurity, and 24x7 monitoring support ensures efficient, secure, and responsive IT operations.' - 'We are a New breed of innovative digital transformation agency, redefining storytelling for an always-on world. With roots dating back to 2017, we started as a pocket size team of enthusiasts with a goal of helping traditional businesses transform and create dynamic, digital cultures through disruptive strategies and agile deployment of innovative solutions.' - source_sentence: What services do you offer for AI adoption? sentences: - 'In what ways can machine learning optimize our operations? Machine learning algorithms can analyze operational data to identify inefficiencies, predict maintenance needs, optimize supply chains, and automate repetitive tasks, significantly improving operational efficiency and reducing costs.' - "At Techchefz Digital, we specialize in guiding companies through the complexities\ \ of adopting and integrating Artificial Intelligence and Machine Learning technologies.\ \ Our consultancy services are designed to enhance your operational efficiency\ \ and decision-making capabilities across all sectors. With a global network of\ \ AI/ML experts and a commitment to excellence, we are your partners in transforming\ \ innovative possibilities into real-world achievements. \ \ \ \ \n DATA INTELLIGENCE PLATFORMS we\ \ specialize in\nTensorFlow\nDatabricks\nTableau\nPytorch\nOpenAI\nPinecone\"" - "SERVICES WE PROVIDE\nFlexible engagement models tailored to your needs\nWe specialize\ \ in comprehensive website audits that provide valuable insights and recommendations\ \ to enhance your online presence.\nDigital Strategy & Consulting\nCreating digital\ \ roadmap that transform your digital enterprise and produce a return on investment,\ \ basis our discovery framework, brainstorming sessions & current state analysis.\n\ \nPlatform Selection\nHelping you select the optimal digital experience, commerce,\ \ cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying\ \ next-gen scalable and agile enterprise digital platforms, along with multi-platform\ \ integrations. \nProduct Builds\nHelp you ideate, strategize, and engineer\ \ your product with help of our enterprise frameworks\nInfrastructure\nSpecialize\ \ in multi-cloud infrastructure helping you put forward the right cloud infrastructure\ \ and optimization strategy.\n\nManaged Services\nOperate and monitor your business-critical\ \ applications, data, and IT workloads, along with Application maintenance and\ \ operations.\nTeam Augmentation\nHelp you scale up and augment your existing\ \ team to solve your hiring challenges with our easy to deploy staff augmentation\ \ offerings.\"" - source_sentence: What challenges did the company face in its early days? sentences: - 'How do we do Custom Development ? We follow below process to develop custom web or mobile Application on Agile Methodology, breaking requirements in pieces and developing and shipping them with considering utmost quality: Requirements Analysis We begin by understanding the client's needs and objectives for the website. Identify key features, functionality, and any specific design preferences. Project Planning Then create a detailed project plan outlining the scope, timeline, and milestones. Define the technology stack and development tools suitable for the project. User Experience Design Then comes the stage of Developing wireframes or prototypes to visualize the website's structure and layout. We create a custom design that aligns with the brand identity and user experience goals. Development After getting Sign-off on Design from Client, we break the requirements into Sprints on Agile Methodology, and start developing them.' - 'After a transformative scuba dive in the Maldives, Mayank Maggon made a pivotal decision to depart from the corporate ladder in December 2016. Fueled by a clear vision to revolutionize the digital landscape, Mayank set out to leverage the best technology ingredients, crafting custom applications and digital ecosystems tailored to clients'' specific needs, limitations, and budgets. However, this solo journey was not without its challenges. Mayank had to initiate the revenue engine by offering corporate trainings and conducting online batches for tech training across the USA. He also undertook small projects and subcontracted modules of larger projects for clients in the US, UK, and India. It was only after this initial groundwork that Mayank was able to hire a group of interns, whom he meticulously trained and groomed to prepare them for handling Enterprise Level Applications. This journey reflects Mayank''s resilience, determination, and entrepreneurial spirit in building TechChefz Digital from the ground up. With a passion for innovation and a relentless drive for excellence, Mayank has steered TechChefz Digital through strategic partnerships, groundbreaking projects, and exponential growth. His leadership has been instrumental in shaping TechChefz Digital into a leading force in the digital transformation arena, inspiring a culture of innovation and excellence that continues to propel the company forward.' - 'Our Solutions Strategy & Digital Transformation Innovate via digital transformation, modernize tech, craft product strategies, enhance customer experiences, optimize data analytics, transition to cloud for growth and efficiency Product Engineering & Custom Development Providing product development, enterprise web and mobile development, microservices integrations, quality engineering, and application support services to drive innovation and enhance operational efficiency.' - source_sentence: What kind of data do you leverage for AI solutions? sentences: - 'In the Introducing the world of Global Insurance Firm, we crafted Effective Solutions for Complex Problems and delieverd a comprehensive Website Development, Production Support & Managed Services, we optimized customer journeys, integrate analytics, CRM, ERP, and third-party applications, and implement cutting-edge technologies for enhanced performance and efficiency and achievied 200% Reduction in operational time & effort managing content & experience, 70% Reduction in Deployment Errors and Downtime, 2.5X Customer Engagement, Conversion & Retention' - 'Why do we need Microservices ? Instead of building a monolithic application where all functionalities are tightly integrated, microservices break down the system into modular and loosely coupled services. Scalability Flexibility and Agility Resilience and Fault Isolation Technology Diversity Continuous Delivery' - Our AI/ML services pave the way for transformative change across industries, embodying a client-focused approach that integrates seamlessly with human-centric innovation. Our collaborative teams are dedicated to fostering growth, leveraging data, and harnessing the predictive power of artificial intelligence to forge the next wave of software excellence. We don't just deliver AI; we deliver the future. - source_sentence: What do you guys do for digital strategy? sentences: - " What we do\n\nDigital Strategy\nCreating digital frameworks that transform\ \ your digital enterprise and produce a return on investment.\n\nPlatform Selection\n\ Helping you select the optimal digital experience, commerce, cloud and marketing\ \ platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable\ \ and agile enterprise digital platforms, along with multi-platform integrations.\n\ \nProduct Builds\nHelp you ideate, strategize, and engineer your product with\ \ help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and\ \ augment your existing team to solve your hiring challenges with our easy to\ \ deploy staff augmentation offerings .\nManaged Services\nOperate and monitor\ \ your business-critical applications, data, and IT workloads, along with Application\ \ maintenance and operations\n" - "Introducing the world of\nGlobal Hospitality Firm\n\nIn this project, We focused\ \ on strategizing CX, diverse platform dev, travel booking, indemnity journeys,\ \ digital community, and managed services enhance travel experience and operational\ \ efficiency. \nStrategizing & defining the Customer Experience across business\ \ units and respective products / services,\nPlatform Development and Integrations\ \ across different tech stacks - Drupal, Magento, MERN, Microservices, Canvas\ \ LMS, OKTA SSO, AWS based Cloud Infrastructure, Build Automation\nTravel Packages\ \ Booking Platform with payments, subscriptions, real time booking, etc\nIndemnity\ \ & Self-Service Journeys\n\nAnd we achieved, 100% Improvement in Marketing Content,\ \ Real Time Prices & Inventories delivery. 80% Increase in Customer Retention,175%\ \ Increase in Partner & Vendor Operational Efficiency" - 'Introducing the world of General Insurance Firm In this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features: PWA & AMP based Web Pages Page Speed Optimization Reusable and scalable React JS / Next JS Templates and Components Headless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams Minimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances We achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages' pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.18666666666666668 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5866666666666667 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.68 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.18666666666666668 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.19555555555555554 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13599999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07999999999999997 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.18666666666666668 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5866666666666667 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.68 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.48942651032647805 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.38962962962962955 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.398026376123124 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.24 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5733333333333334 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6533333333333333 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.24 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1911111111111111 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.13066666666666663 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07999999999999997 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.24 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5733333333333334 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6533333333333333 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4991793077336057 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4047195767195766 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4124023465759078 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.21333333333333335 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.5466666666666666 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.6266666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7466666666666667 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.21333333333333335 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1822222222222222 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12533333333333332 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07466666666666665 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.21333333333333335 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5466666666666666 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.6266666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7466666666666667 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.4717065825983648 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.38359259259259254 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.39417579048787715 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.21333333333333335 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.52 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5733333333333334 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.7066666666666667 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.21333333333333335 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.1733333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.11466666666666667 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07066666666666666 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.21333333333333335 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.52 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5733333333333334 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.7066666666666667 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.44415760022208445 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.36086772486772484 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.37364447853598953 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.14666666666666667 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.4 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.5066666666666667 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.6133333333333333 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14666666666666667 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.13333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.10133333333333334 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.06133333333333333 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14666666666666667 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.4 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.5066666666666667 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.6133333333333333 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.3595031317594935 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.27981481481481474 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.29776557642203677 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Shashwat13333/bge-base-en-v1.5_v1") # Run inference sentences = [ 'What do you guys do for digital strategy?', ' What we do\n\nDigital Strategy\nCreating digital frameworks that transform your digital enterprise and produce a return on investment.\n\nPlatform Selection\nHelping you select the optimal digital experience, commerce, cloud and marketing platform for your enterprise.\n\nPlatform Builds\nDeploying next-gen scalable and agile enterprise digital platforms, along with multi-platform integrations.\n\nProduct Builds\nHelp you ideate, strategize, and engineer your product with help of our enterprise frameworks \n\nTeam Augmentation\nHelp you scale up and augment your existing team to solve your hiring challenges with our easy to deploy staff augmentation offerings .\nManaged Services\nOperate and monitor your business-critical applications, data, and IT workloads, along with Application maintenance and operations\n', 'Introducing the world of General Insurance Firm\nIn this project, we implemented Digital Solution and Implementation with Headless Drupal as the CMS, and lightweight React JS (Next JS SSR on Node JS) with the following features:\nPWA & AMP based Web Pages\nPage Speed Optimization\nReusable and scalable React JS / Next JS Templates and Components\nHeadless Drupal CMS with Content & Experience management, approval workflows, etc for seamless collaboration between the business and marketing teams\nMinimalistic Buy and Renewal Journeys for various products, with API integrations and adherence to data compliances\n\nWe achieved 250% Reduction in Operational Time and Effort in managing the Content & Experience for Buy & renew Journeys,220% Reduction in Customer Drops during buy and renewal journeys, 300% Reduction in bounce rate on policy landing and campaign pages', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------| | cosine_accuracy@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 | | cosine_accuracy@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 | | cosine_accuracy@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 | | cosine_accuracy@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 | | cosine_precision@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 | | cosine_precision@3 | 0.1956 | 0.1911 | 0.1822 | 0.1733 | 0.1333 | | cosine_precision@5 | 0.136 | 0.1307 | 0.1253 | 0.1147 | 0.1013 | | cosine_precision@10 | 0.08 | 0.08 | 0.0747 | 0.0707 | 0.0613 | | cosine_recall@1 | 0.1867 | 0.24 | 0.2133 | 0.2133 | 0.1467 | | cosine_recall@3 | 0.5867 | 0.5733 | 0.5467 | 0.52 | 0.4 | | cosine_recall@5 | 0.68 | 0.6533 | 0.6267 | 0.5733 | 0.5067 | | cosine_recall@10 | 0.8 | 0.8 | 0.7467 | 0.7067 | 0.6133 | | **cosine_ndcg@10** | **0.4894** | **0.4992** | **0.4717** | **0.4442** | **0.3595** | | cosine_mrr@10 | 0.3896 | 0.4047 | 0.3836 | 0.3609 | 0.2798 | | cosine_map@100 | 0.398 | 0.4124 | 0.3942 | 0.3736 | 0.2978 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 150 training samples * Columns: anchor and positive * Approximate statistics based on the first 150 samples: | | anchor | positive | |:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | anchor | positive | |:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Is it hard to move old systems to the cloud? | We offer custom software development, digital marketing strategies, and tailored solutions to drive tangible results for your business. Our expert team combines technical prowess with industry insights to propel your business forward in the digital landscape.

"Engage, analyze & target your customers
Digital transformation enables you to interact with customers across multiple channels, providing personalized experiences. This could include social media engagement, interactive websites, and mobile apps." "Empower your employees & partners
The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Optimize & automate your operations
The push for digital transformation has led many companies to embrace cloud solutions. However, the migration and integration of legacy systems into the cloud often present challenges." "Transform your products
The push for digi...
| | What benefits does marketing automation offer for time management? | Our MarTech capabilities

Personalization
Involves tailoring marketing messages and experiences to individual customers. It enhances customer engagement, loyalty, and ultimately, conversion rates.

Marketing Automation
Marketing automation streamlines repetitive tasks such as email marketing, lead nurturing, and social media posting. It improves efficiency, saves time, and ensures timely communication with customers.

Customer Relationship Management
CRM systems help manage interactions with current and potential customers. They store customer data, track interactions, and facilitate communication, improving customer retention.
| | do you track customer behavior? | How can your recommendation engines improve our business?
Our recommendation engines are designed to analyze customer behavior and preferences to deliver personalized suggestions, enhancing user experience, increasing sales, and boosting customer retention.
| * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 4 - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `push_to_hub`: True - `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1 - `push_to_hub_model_id`: bge-base-en-v1.5_v1 - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 4 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: True - `resume_from_checkpoint`: None - `hub_model_id`: Shashwat13333/bge-base-en-v1.5_v1 - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: bge-base-en-v1.5_v1 - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2105 | 1 | 22.6183 | - | - | - | - | - | | 0.8421 | 4 | - | 0.4602 | 0.4392 | 0.4498 | 0.4162 | 0.3698 | | 1.2105 | 5 | 20.549 | - | - | - | - | - | | 1.8421 | 8 | - | 0.5047 | 0.4304 | 0.4538 | 0.4202 | 0.3458 | | 2.4211 | 10 | 17.664 | - | - | - | - | - | | **2.8421** | **12** | **-** | **0.482** | **0.4618** | **0.4658** | **0.4537** | **0.3496** | | 3.6316 | 15 | 14.6735 | - | - | - | - | - | | 3.8421 | 16 | - | 0.4894 | 0.4992 | 0.4717 | 0.4442 | 0.3595 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.4.1 - Transformers: 4.48.2 - PyTorch: 2.5.1+cu124 - Accelerate: 1.3.0 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```