import tensorflow as tf print('loading best_model.h5...') try: # Load without compiling to avoid deserializing legacy training configs/metrics m = tf.keras.models.load_model('best_model.h5', compile=False) except Exception as e: print('Failed to load best_model.h5:', e) raise # Try to export to the TF SavedModel format first try: m.export('saved_model_age_regressor') print('Exported SavedModel to ./saved_model_age_regressor') except Exception as e: print('Export to SavedModel failed:', e) # Fallback: save as Keras native single-file and HDF5 for compatibility try: m.save('saved_model_age_regressor.keras') print('Saved Keras model to ./saved_model_age_regressor.keras') except Exception as e2: print('Saving Keras native format failed:', e2) try: m.save('final_model.h5') print('Saved HDF5 model to ./final_model.h5') except Exception as e3: print('Saving HDF5 format failed:', e3)