Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,106 @@ datasets:
|
|
3 |
- ekshat/text-2-sql-with-context
|
4 |
language:
|
5 |
- en
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
- ekshat/text-2-sql-with-context
|
4 |
language:
|
5 |
- en
|
6 |
+
library_name: transformers
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
tags:
|
9 |
+
- text-2-sql
|
10 |
+
- text-generation
|
11 |
+
- text2sql
|
12 |
+
---
|
13 |
+
# Introduction
|
14 |
+
Our Model is fine-tuned on Llama-2 7B model on Text-2-SQL Dataset based on Alpaca format described by Stanford. We have used QLora, Bits&Bytes, Accelerate and Transformers Library to implement PEFT concept.
|
15 |
+
For more information, please visit [github.com/akshayhedaoo1](https://github.com/akshayhedaoo1/Llama-2-7b-chat-finetune-for-text2sql/tree/Data-Science)
|
16 |
+
|
17 |
+
|
18 |
+
# Inference
|
19 |
+
```python
|
20 |
+
!pip install transformers accelerate xformers bitsandbytes
|
21 |
+
|
22 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql")
|
25 |
+
|
26 |
+
# Loading model in 4 bit precision
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("ekshat/Llama-2-7b-chat-finetune-for-text2sql", load_in_4bit=True)
|
28 |
+
|
29 |
+
context = "CREATE TABLE head (name VARCHAR, born_state VARCHAR, age VARCHAR)"
|
30 |
+
question = "List the name, born state and age of the heads of departments ordered by age."
|
31 |
+
|
32 |
+
prompt = f"""Below is an context that describes a sql query, paired with an question that provides further information. Write an answer that appropriately completes the request.
|
33 |
+
### Context:
|
34 |
+
{context}
|
35 |
+
### Question:
|
36 |
+
{question}
|
37 |
+
### Answer:"""
|
38 |
+
|
39 |
+
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
|
40 |
+
result = pipe(prompt)
|
41 |
+
print(result[0]['generated_text'])
|
42 |
+
```
|
43 |
+
|
44 |
+
|
45 |
+
# Model Information
|
46 |
+
- **model_name = "NousResearch/Llama-2-7b-chat-hf"**
|
47 |
+
|
48 |
+
- **dataset_name = "ekshat/text-2-sql-with-context"**
|
49 |
+
|
50 |
+
|
51 |
+
# QLoRA parameters
|
52 |
+
- **lora_r = 64**
|
53 |
+
|
54 |
+
- **lora_alpha = 16**
|
55 |
+
|
56 |
+
- **lora_dropout = 0.1**
|
57 |
+
|
58 |
+
|
59 |
+
# BitsAndBytes parameters
|
60 |
+
- **use_4bit = True**
|
61 |
+
|
62 |
+
- **bnb_4bit_compute_dtype = "float16"**
|
63 |
+
|
64 |
+
- **bnb_4bit_quant_type = "nf4"**
|
65 |
+
|
66 |
+
- **use_nested_quant = False**
|
67 |
+
|
68 |
+
|
69 |
+
# Training Arguments parameters
|
70 |
+
- **num_train_epochs = 1**
|
71 |
+
|
72 |
+
- **fp16 = False**
|
73 |
+
|
74 |
+
- **bf16 = False**
|
75 |
+
|
76 |
+
- **per_device_train_batch_size = 8**
|
77 |
+
|
78 |
+
- **per_device_eval_batch_size = 4**
|
79 |
+
|
80 |
+
- **gradient_accumulation_steps = 1**
|
81 |
+
|
82 |
+
- **gradient_checkpointing = True**
|
83 |
+
|
84 |
+
- **max_grad_norm = 0.3**
|
85 |
+
|
86 |
+
- **learning_rate = 2e-4**
|
87 |
+
|
88 |
+
- **weight_decay = 0.001**
|
89 |
+
|
90 |
+
- **optim = "paged_adamw_32bit"**
|
91 |
+
|
92 |
+
- **lr_scheduler_type = "cosine"**
|
93 |
+
|
94 |
+
- **max_steps = -1**
|
95 |
+
|
96 |
+
- **warmup_ratio = 0.03**
|
97 |
+
|
98 |
+
- **group_by_length = True**
|
99 |
+
|
100 |
+
- **save_steps = 0**
|
101 |
+
|
102 |
+
- **logging_steps = 25**
|
103 |
+
|
104 |
+
|
105 |
+
# SFT parameters
|
106 |
+
- **max_seq_length = None**
|
107 |
+
|
108 |
+
- **packing = False**
|