ShahzadSohail commited on
Commit
5f7657b
·
verified ·
1 Parent(s): bfa7146

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -202
README.md CHANGED
@@ -1,210 +1,140 @@
1
  ---
2
  language: en
3
  tags:
4
- - text-classification
5
- - pytorch
6
- - roberta
7
- - emotions
8
- - multi-class-classification
9
- - multi-label-classification
10
  datasets:
11
- - go_emotions
12
  license: mit
13
  widget:
14
- - text: I am not having a great day.
15
  ---
16
 
17
- # Model Card for Model ID
18
-
19
- <!-- Provide a quick summary of what the model is/does. -->
20
-
21
-
22
-
23
- ## Model Details
24
-
25
- ### Model Description
26
-
27
- <!-- Provide a longer summary of what this model is. -->
28
-
29
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
30
-
31
- - **Developed by:** [More Information Needed]
32
- - **Funded by [optional]:** [More Information Needed]
33
- - **Shared by [optional]:** [More Information Needed]
34
- - **Model type:** [More Information Needed]
35
- - **Language(s) (NLP):** [More Information Needed]
36
- - **License:** [More Information Needed]
37
- - **Finetuned from model [optional]:** [More Information Needed]
38
-
39
- ### Model Sources [optional]
40
-
41
- <!-- Provide the basic links for the model. -->
42
-
43
- - **Repository:** [More Information Needed]
44
- - **Paper [optional]:** [More Information Needed]
45
- - **Demo [optional]:** [More Information Needed]
46
-
47
- ## Uses
48
-
49
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
50
-
51
- ### Direct Use
52
-
53
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
54
-
55
- [More Information Needed]
56
-
57
- ### Downstream Use [optional]
58
-
59
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
60
-
61
- [More Information Needed]
62
-
63
- ### Out-of-Scope Use
64
-
65
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
66
-
67
- [More Information Needed]
68
-
69
- ## Bias, Risks, and Limitations
70
-
71
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
72
-
73
- [More Information Needed]
74
-
75
- ### Recommendations
76
-
77
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
78
-
79
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
80
-
81
- ## How to Get Started with the Model
82
-
83
- Use the code below to get started with the model.
84
-
85
- [More Information Needed]
86
-
87
- ## Training Details
88
-
89
- ### Training Data
90
-
91
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
92
-
93
- [More Information Needed]
94
-
95
- ### Training Procedure
96
-
97
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
98
-
99
- #### Preprocessing [optional]
100
-
101
- [More Information Needed]
102
-
103
-
104
- #### Training Hyperparameters
105
-
106
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
107
-
108
- #### Speeds, Sizes, Times [optional]
109
-
110
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
111
-
112
- [More Information Needed]
113
-
114
- ## Evaluation
115
-
116
- <!-- This section describes the evaluation protocols and provides the results. -->
117
-
118
- ### Testing Data, Factors & Metrics
119
-
120
- #### Testing Data
121
-
122
- <!-- This should link to a Dataset Card if possible. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Factors
127
-
128
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
129
-
130
- [More Information Needed]
131
-
132
- #### Metrics
133
-
134
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
135
-
136
- [More Information Needed]
137
-
138
- ### Results
139
-
140
- [More Information Needed]
141
-
142
- #### Summary
143
-
144
-
145
-
146
- ## Model Examination [optional]
147
-
148
- <!-- Relevant interpretability work for the model goes here -->
149
-
150
- [More Information Needed]
151
-
152
- ## Environmental Impact
153
-
154
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
155
-
156
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
157
-
158
- - **Hardware Type:** [More Information Needed]
159
- - **Hours used:** [More Information Needed]
160
- - **Cloud Provider:** [More Information Needed]
161
- - **Compute Region:** [More Information Needed]
162
- - **Carbon Emitted:** [More Information Needed]
163
-
164
- ## Technical Specifications [optional]
165
-
166
- ### Model Architecture and Objective
167
-
168
- [More Information Needed]
169
-
170
- ### Compute Infrastructure
171
-
172
- [More Information Needed]
173
-
174
- #### Hardware
175
-
176
- [More Information Needed]
177
-
178
- #### Software
179
-
180
- [More Information Needed]
181
-
182
- ## Citation [optional]
183
-
184
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
185
-
186
- **BibTeX:**
187
-
188
- [More Information Needed]
189
-
190
- **APA:**
191
-
192
- [More Information Needed]
193
-
194
- ## Glossary [optional]
195
-
196
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
197
-
198
- [More Information Needed]
199
-
200
- ## More Information [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Authors [optional]
205
-
206
- [More Information Needed]
207
-
208
- ## Model Card Contact
209
-
210
- [More Information Needed]
 
1
  ---
2
  language: en
3
  tags:
4
+ - text-classification
5
+ - pytorch
6
+ - roberta
7
+ - emotions
8
+ - multi-class-classification
9
+ - multi-label-classification
10
  datasets:
11
+ - go_emotions
12
  license: mit
13
  widget:
14
+ - text: I am not having a great day.
15
  ---
16
 
17
+ #### Overview
18
+
19
+ Model trained from [roberta-base](https://huggingface.co/roberta-base) on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset for multi-label classification.
20
+
21
+
22
+
23
+ #### How the model was created
24
+
25
+ The model was trained using `AutoModelForSequenceClassification.from_pretrained` with `problem_type="multi_label_classification"` for 3 epochs with a learning rate of 2e-5 and weight decay of 0.01.
26
+
27
+ #### Inference
28
+
29
+ There are multiple ways to use this model in Huggingface Transformers. Possibly the simplest is using a pipeline:
30
+
31
+ ```python
32
+ from transformers import pipeline
33
+
34
+ classifier = pipeline(task="text-classification", model="ShahzadSohail/emotion_detection_model_final", top_k=None)
35
+
36
+ sentences = ["I am not having a great day"]
37
+
38
+ model_outputs = classifier(sentences)
39
+ print(model_outputs[0])
40
+ # produces a list of dicts for each of the labels
41
+ ```
42
+
43
+
44
+
45
+ ##### Summary
46
+
47
+ As provided in the above notebook, evaluation of the multi-label output (of the 28 dim output via a threshold of 0.5 to binarize each) using the dataset test split gives:
48
+
49
+ - Accuracy: 0.474
50
+ - Precision: 0.575
51
+ - Recall: 0.396
52
+ - F1: 0.450
53
+
54
+ But the metrics are more meaningful when measured per label given the multi-label nature (each label is effectively an independent binary classification) and the fact that there is drastically different representations of the labels in the dataset.
55
+
56
+ With a threshold of 0.5 applied to binarize the model outputs, as per the above notebook, the metrics per label are:
57
+
58
+ | | accuracy | precision | recall | f1 | mcc | support | threshold |
59
+ | -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
60
+ | admiration | 0.946 | 0.725 | 0.675 | 0.699 | 0.670 | 504 | 0.5 |
61
+ | amusement | 0.982 | 0.790 | 0.871 | 0.829 | 0.821 | 264 | 0.5 |
62
+ | anger | 0.970 | 0.652 | 0.379 | 0.479 | 0.483 | 198 | 0.5 |
63
+ | annoyance | 0.940 | 0.472 | 0.159 | 0.238 | 0.250 | 320 | 0.5 |
64
+ | approval | 0.942 | 0.609 | 0.302 | 0.404 | 0.403 | 351 | 0.5 |
65
+ | caring | 0.973 | 0.448 | 0.319 | 0.372 | 0.364 | 135 | 0.5 |
66
+ | confusion | 0.972 | 0.500 | 0.431 | 0.463 | 0.450 | 153 | 0.5 |
67
+ | curiosity | 0.950 | 0.537 | 0.356 | 0.428 | 0.412 | 284 | 0.5 |
68
+ | desire | 0.987 | 0.630 | 0.410 | 0.496 | 0.502 | 83 | 0.5 |
69
+ | disappointment | 0.974 | 0.625 | 0.199 | 0.302 | 0.343 | 151 | 0.5 |
70
+ | disapproval | 0.950 | 0.494 | 0.307 | 0.379 | 0.365 | 267 | 0.5 |
71
+ | disgust | 0.982 | 0.707 | 0.333 | 0.453 | 0.478 | 123 | 0.5 |
72
+ | embarrassment | 0.994 | 0.750 | 0.243 | 0.367 | 0.425 | 37 | 0.5 |
73
+ | excitement | 0.983 | 0.603 | 0.340 | 0.435 | 0.445 | 103 | 0.5 |
74
+ | fear | 0.992 | 0.758 | 0.603 | 0.671 | 0.672 | 78 | 0.5 |
75
+ | gratitude | 0.990 | 0.960 | 0.881 | 0.919 | 0.914 | 352 | 0.5 |
76
+ | grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
77
+ | joy | 0.978 | 0.647 | 0.559 | 0.600 | 0.590 | 161 | 0.5 |
78
+ | love | 0.982 | 0.773 | 0.832 | 0.802 | 0.793 | 238 | 0.5 |
79
+ | nervousness | 0.996 | 0.600 | 0.130 | 0.214 | 0.278 | 23 | 0.5 |
80
+ | optimism | 0.972 | 0.667 | 0.376 | 0.481 | 0.488 | 186 | 0.5 |
81
+ | pride | 0.997 | 0.000 | 0.000 | 0.000 | 0.000 | 16 | 0.5 |
82
+ | realization | 0.974 | 0.541 | 0.138 | 0.220 | 0.264 | 145 | 0.5 |
83
+ | relief | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 11 | 0.5 |
84
+ | remorse | 0.991 | 0.553 | 0.750 | 0.636 | 0.640 | 56 | 0.5 |
85
+ | sadness | 0.977 | 0.621 | 0.494 | 0.550 | 0.542 | 156 | 0.5 |
86
+ | surprise | 0.981 | 0.750 | 0.404 | 0.525 | 0.542 | 141 | 0.5 |
87
+ | neutral | 0.782 | 0.694 | 0.604 | 0.646 | 0.492 | 1787 | 0.5 |
88
+
89
+ Optimizing the threshold per label for the one that gives the optimum F1 metrics gives slightly better metrics - sacrificing some precision for a greater gain in recall, hence to the benefit of F1 (how this was done is shown in the above notebook):
90
+
91
+ | | accuracy | precision | recall | f1 | mcc | support | threshold |
92
+ | -------------- | -------- | --------- | ------ | ----- | ----- | ------- | --------- |
93
+ | admiration | 0.940 | 0.651 | 0.776 | 0.708 | 0.678 | 504 | 0.25 |
94
+ | amusement | 0.982 | 0.781 | 0.890 | 0.832 | 0.825 | 264 | 0.45 |
95
+ | anger | 0.959 | 0.454 | 0.601 | 0.517 | 0.502 | 198 | 0.15 |
96
+ | annoyance | 0.864 | 0.243 | 0.619 | 0.349 | 0.328 | 320 | 0.10 |
97
+ | approval | 0.926 | 0.432 | 0.442 | 0.437 | 0.397 | 351 | 0.30 |
98
+ | caring | 0.972 | 0.426 | 0.385 | 0.405 | 0.391 | 135 | 0.40 |
99
+ | confusion | 0.974 | 0.548 | 0.412 | 0.470 | 0.462 | 153 | 0.55 |
100
+ | curiosity | 0.943 | 0.473 | 0.711 | 0.568 | 0.552 | 284 | 0.25 |
101
+ | desire | 0.985 | 0.518 | 0.530 | 0.524 | 0.516 | 83 | 0.25 |
102
+ | disappointment | 0.974 | 0.562 | 0.298 | 0.390 | 0.398 | 151 | 0.40 |
103
+ | disapproval | 0.941 | 0.414 | 0.468 | 0.439 | 0.409 | 267 | 0.30 |
104
+ | disgust | 0.978 | 0.523 | 0.463 | 0.491 | 0.481 | 123 | 0.20 |
105
+ | embarrassment | 0.994 | 0.567 | 0.459 | 0.507 | 0.507 | 37 | 0.10 |
106
+ | excitement | 0.981 | 0.500 | 0.417 | 0.455 | 0.447 | 103 | 0.35 |
107
+ | fear | 0.991 | 0.712 | 0.667 | 0.689 | 0.685 | 78 | 0.40 |
108
+ | gratitude | 0.990 | 0.957 | 0.889 | 0.922 | 0.917 | 352 | 0.45 |
109
+ | grief | 0.999 | 0.333 | 0.333 | 0.333 | 0.333 | 6 | 0.05 |
110
+ | joy | 0.978 | 0.623 | 0.646 | 0.634 | 0.623 | 161 | 0.40 |
111
+ | love | 0.982 | 0.740 | 0.899 | 0.812 | 0.807 | 238 | 0.25 |
112
+ | nervousness | 0.996 | 0.571 | 0.348 | 0.432 | 0.444 | 23 | 0.25 |
113
+ | optimism | 0.971 | 0.580 | 0.565 | 0.572 | 0.557 | 186 | 0.20 |
114
+ | pride | 0.998 | 0.875 | 0.438 | 0.583 | 0.618 | 16 | 0.10 |
115
+ | realization | 0.961 | 0.270 | 0.262 | 0.266 | 0.246 | 145 | 0.15 |
116
+ | relief | 0.992 | 0.152 | 0.636 | 0.246 | 0.309 | 11 | 0.05 |
117
+ | remorse | 0.991 | 0.541 | 0.946 | 0.688 | 0.712 | 56 | 0.10 |
118
+ | sadness | 0.977 | 0.599 | 0.583 | 0.591 | 0.579 | 156 | 0.40 |
119
+ | surprise | 0.977 | 0.543 | 0.674 | 0.601 | 0.593 | 141 | 0.15 |
120
+ | neutral | 0.758 | 0.598 | 0.810 | 0.688 | 0.513 | 1787 | 0.25 |
121
+
122
+ This improves the overall metrics:
123
+
124
+ - Precision: 0.542
125
+ - Recall: 0.577
126
+ - F1: 0.541
127
+
128
+ Or if calculated weighted by the relative size of the support of each label:
129
+
130
+ - Precision: 0.572
131
+ - Recall: 0.677
132
+ - F1: 0.611
133
+
134
+ #### Commentary on the dataset
135
+
136
+ Some labels (E.g. gratitude) when considered independently perform very strongly with F1 exceeding 0.9, whilst others (E.g. relief) perform very poorly.
137
+
138
+ This is a challenging dataset. Labels such as relief do have much fewer examples in the training data (less than 100 out of the 40k+, and only 11 in the test split).
139
+
140
+ But there is also some ambiguity and/or labelling errors visible in the training data of go_emotions that is suspected to constrain the performance. Data cleaning on the dataset to reduce some of the mistakes, ambiguity, conflicts and duplication in the labelling would produce a higher performing model.