Shadman-Rohan commited on
Commit
a94f6f3
·
1 Parent(s): cd09f96

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -0
README.md ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: outputs
6
+ results: []
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # outputs
13
+
14
+ This model is a fine-tuned version of [csebuetnlp/banglabert](https://huggingface.co/csebuetnlp/banglabert) on an unknown dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.2073
17
+ - 5 Err Precision: 0.0
18
+ - 5 Err Recall: 0.0
19
+ - 5 Err F1: 0.0
20
+ - 5 Err Number: 34
21
+ - Precision: 0.3586
22
+ - Recall: 0.2192
23
+ - F1: 0.2721
24
+ - Number: 9934
25
+ - Err Precision: 0.0
26
+ - Err Recall: 0.0
27
+ - Err F1: 0.0
28
+ - Err Number: 285
29
+ - Egin Err Precision: 0.9184
30
+ - Egin Err Recall: 0.0400
31
+ - Egin Err F1: 0.0766
32
+ - Egin Err Number: 1126
33
+ - El Err Precision: 0.8718
34
+ - El Err Recall: 0.1478
35
+ - El Err F1: 0.2528
36
+ - El Err Number: 1380
37
+ - Nd Err Precision: 0.7453
38
+ - Nd Err Recall: 0.1995
39
+ - Nd Err F1: 0.3147
40
+ - Nd Err Number: 1188
41
+ - Ne Word Err Precision: 0.6677
42
+ - Ne Word Err Recall: 0.5206
43
+ - Ne Word Err F1: 0.5850
44
+ - Ne Word Err Number: 8247
45
+ - Unc Insert Err Precision: 1.0
46
+ - Unc Insert Err Recall: 0.0011
47
+ - Unc Insert Err F1: 0.0022
48
+ - Unc Insert Err Number: 902
49
+ - Micro Avg Precision: 0.5309
50
+ - Micro Avg Recall: 0.3013
51
+ - Micro Avg F1: 0.3844
52
+ - Micro Avg Number: 23096
53
+ - Macro Avg Precision: 0.5702
54
+ - Macro Avg Recall: 0.1410
55
+ - Macro Avg F1: 0.1879
56
+ - Macro Avg Number: 23096
57
+ - Weighted Avg Precision: 0.5669
58
+ - Weighted Avg Recall: 0.3013
59
+ - Weighted Avg F1: 0.3611
60
+ - Weighted Avg Number: 23096
61
+ - Overall Accuracy: 0.9419
62
+
63
+ ## Model description
64
+
65
+ More information needed
66
+
67
+ ## Intended uses & limitations
68
+
69
+ More information needed
70
+
71
+ ## Training and evaluation data
72
+
73
+ More information needed
74
+
75
+ ## Training procedure
76
+
77
+ ### Training hyperparameters
78
+
79
+ The following hyperparameters were used during training:
80
+ - learning_rate: 2e-05
81
+ - train_batch_size: 16
82
+ - eval_batch_size: 16
83
+ - seed: 42
84
+ - gradient_accumulation_steps: 2
85
+ - total_train_batch_size: 32
86
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
87
+ - lr_scheduler_type: linear
88
+ - lr_scheduler_warmup_ratio: 0.1
89
+ - num_epochs: 1.0
90
+
91
+ ### Training results
92
+
93
+ | Training Loss | Epoch | Step | Validation Loss | 5 Err Precision | 5 Err Recall | 5 Err F1 | 5 Err Number | Precision | Recall | F1 | Number | Err Precision | Err Recall | Err F1 | Err Number | Egin Err Precision | Egin Err Recall | Egin Err F1 | Egin Err Number | El Err Precision | El Err Recall | El Err F1 | El Err Number | Nd Err Precision | Nd Err Recall | Nd Err F1 | Nd Err Number | Ne Word Err Precision | Ne Word Err Recall | Ne Word Err F1 | Ne Word Err Number | Unc Insert Err Precision | Unc Insert Err Recall | Unc Insert Err F1 | Unc Insert Err Number | Micro Avg Precision | Micro Avg Recall | Micro Avg F1 | Micro Avg Number | Macro Avg Precision | Macro Avg Recall | Macro Avg F1 | Macro Avg Number | Weighted Avg Precision | Weighted Avg Recall | Weighted Avg F1 | Weighted Avg Number | Overall Accuracy |
94
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------:|:--------:|:------------:|:-----------:|:--------:|:------:|:--------:|:--------------:|:-----------:|:-------:|:-----------:|:------------------:|:---------------:|:-----------:|:---------------:|:----------------:|:-------------:|:---------:|:-------------:|:----------------:|:-------------:|:---------:|:-------------:|:---------------------:|:------------------:|:--------------:|:------------------:|:------------------------:|:---------------------:|:-----------------:|:---------------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:----------------------:|:-------------------:|:---------------:|:-------------------:|:----------------:|
95
+ | 0.3677 | 1.0 | 575 | 0.2073 | 0.0 | 0.0 | 0.0 | 34 | 0.3586 | 0.2192 | 0.2721 | 9934 | 0.0 | 0.0 | 0.0 | 285 | 0.9184 | 0.0400 | 0.0766 | 1126 | 0.8718 | 0.1478 | 0.2528 | 1380 | 0.7453 | 0.1995 | 0.3147 | 1188 | 0.6677 | 0.5206 | 0.5850 | 8247 | 1.0 | 0.0011 | 0.0022 | 902 | 0.5309 | 0.3013 | 0.3844 | 23096 | 0.5702 | 0.1410 | 0.1879 | 23096 | 0.5669 | 0.3013 | 0.3611 | 23096 | 0.9419 |
96
+
97
+
98
+ ### Framework versions
99
+
100
+ - Transformers 4.25.1
101
+ - Pytorch 1.13.1+cu117
102
+ - Datasets 2.9.0
103
+ - Tokenizers 0.13.2