Sfekih commited on
Commit
a3ceb41
·
verified ·
1 Parent(s): 02b358e

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,183 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: Crisis Group telephone interview, UNRWA official, November 2023.
14
+ - text: Testimony of Maryam al-Khdeirat (55) from Khirbet Zanutah, Hebron 14 Box 3.
15
+ - text: Consulte los materiales adjuntos para lecturas adicionales.
16
+ - text: Témoignage de Leila, réfugiée syrienne en Jordanie 29 Boîte 4.
17
+ - text: Interview téléphonique, représentant de l'ONU, février 2024.
18
+ inference: true
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/all-MiniLM-L6-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 256 tokens
37
+ - **Number of Classes:** 2 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 1 | <ul><li>'In addition to date, UNFPA has distributed dignity kits to 12,650 people through partners.'</li><li>'In particular, WHO, acting on the eight pillars of the global WHO Strategic Preparedness and Response Plan, continues engaging the MoH and health partners to enhance technical capacity and awareness, including on rational use of PPEs, case management, infection prevention and control, environmental disinfection, and risk communication; and is focused on procuring and enhancing integral medical supplies including in laboratory testing and PPE for case management and healthcare facilities'</li><li>'Adicionalmente, la propuesta incluyóla entrega de mercados para asistencia alimentaria al menos a 244 personas sobrevivientes de Minas Antipersonal (MAP), Municiones sin Explotar (MSE) y/o Artefactos Explosivos Improvisados (AEI) y sus núcleos familiares.'</li></ul> |
52
+ | 0 | <ul><li>'Labor market indicators by age 42 List of figures Figure 2.'</li><li>'Women’s involvement in conflict mediation: percentage of women leading initiatives 52 List of boxes Box 2.'</li><li>'Entrevista telefónica, funcionario de la ONU, octubre de 2023.'</li></ul> |
53
+
54
+ ## Uses
55
+
56
+ ### Direct Use for Inference
57
+
58
+ First install the SetFit library:
59
+
60
+ ```bash
61
+ pip install setfit
62
+ ```
63
+
64
+ Then you can load this model and run inference.
65
+
66
+ ```python
67
+ from setfit import SetFitModel
68
+
69
+ # Download from the 🤗 Hub
70
+ model = SetFitModel.from_pretrained("setfit_model_id")
71
+ # Run inference
72
+ preds = model("Consulte los materiales adjuntos para lecturas adicionales.")
73
+ ```
74
+
75
+ <!--
76
+ ### Downstream Use
77
+
78
+ *List how someone could finetune this model on their own dataset.*
79
+ -->
80
+
81
+ <!--
82
+ ### Out-of-Scope Use
83
+
84
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
85
+ -->
86
+
87
+ <!--
88
+ ## Bias, Risks and Limitations
89
+
90
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
91
+ -->
92
+
93
+ <!--
94
+ ### Recommendations
95
+
96
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
97
+ -->
98
+
99
+ ## Training Details
100
+
101
+ ### Training Set Metrics
102
+ | Training set | Min | Median | Max |
103
+ |:-------------|:----|:--------|:----|
104
+ | Word count | 2 | 24.6961 | 85 |
105
+
106
+ | Label | Training Sample Count |
107
+ |:------|:----------------------|
108
+ | 0 | 81 |
109
+ | 1 | 100 |
110
+
111
+ ### Training Hyperparameters
112
+ - batch_size: (32, 32)
113
+ - num_epochs: (1, 1)
114
+ - max_steps: -1
115
+ - sampling_strategy: oversampling
116
+ - num_iterations: 35
117
+ - body_learning_rate: (2e-05, 2e-05)
118
+ - head_learning_rate: 2e-05
119
+ - loss: CosineSimilarityLoss
120
+ - distance_metric: cosine_distance
121
+ - margin: 0.25
122
+ - end_to_end: False
123
+ - use_amp: False
124
+ - warmup_proportion: 0.1
125
+ - l2_weight: 0.01
126
+ - seed: 42
127
+ - eval_max_steps: -1
128
+ - load_best_model_at_end: False
129
+
130
+ ### Training Results
131
+ | Epoch | Step | Training Loss | Validation Loss |
132
+ |:------:|:----:|:-------------:|:---------------:|
133
+ | 0.0025 | 1 | 0.3104 | - |
134
+ | 0.1263 | 50 | 0.2567 | - |
135
+ | 0.2525 | 100 | 0.0406 | - |
136
+ | 0.3788 | 150 | 0.0034 | - |
137
+ | 0.5051 | 200 | 0.0017 | - |
138
+ | 0.6313 | 250 | 0.0012 | - |
139
+ | 0.7576 | 300 | 0.0009 | - |
140
+ | 0.8838 | 350 | 0.0008 | - |
141
+
142
+ ### Framework Versions
143
+ - Python: 3.11.5
144
+ - SetFit: 1.1.0
145
+ - Sentence Transformers: 3.1.1
146
+ - Transformers: 4.45.1
147
+ - PyTorch: 2.1.0
148
+ - Datasets: 2.17.1
149
+ - Tokenizers: 0.20.0
150
+
151
+ ## Citation
152
+
153
+ ### BibTeX
154
+ ```bibtex
155
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
156
+ doi = {10.48550/ARXIV.2209.11055},
157
+ url = {https://arxiv.org/abs/2209.11055},
158
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
159
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
160
+ title = {Efficient Few-Shot Learning Without Prompts},
161
+ publisher = {arXiv},
162
+ year = {2022},
163
+ copyright = {Creative Commons Attribution 4.0 International}
164
+ }
165
+ ```
166
+
167
+ <!--
168
+ ## Glossary
169
+
170
+ *Clearly define terms in order to be accessible across audiences.*
171
+ -->
172
+
173
+ <!--
174
+ ## Model Card Authors
175
+
176
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
177
+ -->
178
+
179
+ <!--
180
+ ## Model Card Contact
181
+
182
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
183
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.45.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.45.1",
5
+ "pytorch": "2.1.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed53c8b21ad29f1c1e381f1085c9a21909b5fdedc79790967199778db95e283c
3
+ size 90864192
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed1ed5b95618a112ed6d40fd5adafb1e87b44bb960d4a846a82abda9091a7f2d
3
+ size 3935
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 256,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff