update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_11_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-xls-r-300m-tr
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_11_0
|
17 |
+
type: common_voice_11_0
|
18 |
+
config: tr
|
19 |
+
split: test
|
20 |
+
args: tr
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.28665152662124654
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-xls-r-300m-tr
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.3184
|
35 |
+
- Wer: 0.2867
|
36 |
+
- Cer: 0.0681
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 0.0003
|
56 |
+
- train_batch_size: 64
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 500
|
62 |
+
- num_epochs: 30.0
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
68 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
69 |
+
| No log | 0.71 | 400 | 1.7290 | 0.9804 | 0.4797 |
|
70 |
+
| 4.5435 | 1.42 | 800 | 0.4810 | 0.5774 | 0.1450 |
|
71 |
+
| 0.523 | 2.12 | 1200 | 0.3859 | 0.4812 | 0.1156 |
|
72 |
+
| 0.3449 | 2.83 | 1600 | 0.3492 | 0.4498 | 0.1095 |
|
73 |
+
| 0.2814 | 3.54 | 2000 | 0.3660 | 0.4466 | 0.1099 |
|
74 |
+
| 0.2814 | 4.25 | 2400 | 0.3766 | 0.4235 | 0.1043 |
|
75 |
+
| 0.2463 | 4.96 | 2800 | 0.3416 | 0.4119 | 0.1010 |
|
76 |
+
| 0.2296 | 5.66 | 3200 | 0.3322 | 0.4013 | 0.0979 |
|
77 |
+
| 0.2143 | 6.37 | 3600 | 0.3370 | 0.3956 | 0.0972 |
|
78 |
+
| 0.1955 | 7.08 | 4000 | 0.3401 | 0.4033 | 0.0998 |
|
79 |
+
| 0.1955 | 7.79 | 4400 | 0.3375 | 0.3889 | 0.0962 |
|
80 |
+
| 0.1845 | 8.5 | 4800 | 0.3455 | 0.3752 | 0.0923 |
|
81 |
+
| 0.1752 | 9.2 | 5200 | 0.3336 | 0.3718 | 0.0925 |
|
82 |
+
| 0.1705 | 9.91 | 5600 | 0.3145 | 0.3653 | 0.0892 |
|
83 |
+
| 0.1585 | 10.62 | 6000 | 0.3410 | 0.3737 | 0.0922 |
|
84 |
+
| 0.1585 | 11.33 | 6400 | 0.3296 | 0.3664 | 0.0899 |
|
85 |
+
| 0.1474 | 12.04 | 6800 | 0.3492 | 0.3590 | 0.0899 |
|
86 |
+
| 0.1485 | 12.74 | 7200 | 0.3176 | 0.3506 | 0.0867 |
|
87 |
+
| 0.137 | 13.45 | 7600 | 0.3532 | 0.3600 | 0.0890 |
|
88 |
+
| 0.1291 | 14.16 | 8000 | 0.3318 | 0.3571 | 0.0873 |
|
89 |
+
| 0.1291 | 14.87 | 8400 | 0.3353 | 0.3548 | 0.0883 |
|
90 |
+
| 0.1274 | 15.58 | 8800 | 0.3235 | 0.3396 | 0.0823 |
|
91 |
+
| 0.1198 | 16.28 | 9200 | 0.3259 | 0.3389 | 0.0832 |
|
92 |
+
| 0.1164 | 16.99 | 9600 | 0.3263 | 0.3411 | 0.0844 |
|
93 |
+
| 0.1119 | 17.7 | 10000 | 0.3254 | 0.3377 | 0.0824 |
|
94 |
+
| 0.1119 | 18.41 | 10400 | 0.3243 | 0.3331 | 0.0812 |
|
95 |
+
| 0.1054 | 19.12 | 10800 | 0.3223 | 0.3239 | 0.0790 |
|
96 |
+
| 0.1017 | 19.82 | 11200 | 0.3054 | 0.3190 | 0.0774 |
|
97 |
+
| 0.0964 | 20.53 | 11600 | 0.3278 | 0.3237 | 0.0785 |
|
98 |
+
| 0.0903 | 21.24 | 12000 | 0.3167 | 0.3177 | 0.0774 |
|
99 |
+
| 0.0903 | 21.95 | 12400 | 0.3331 | 0.3124 | 0.0766 |
|
100 |
+
| 0.0886 | 22.65 | 12800 | 0.3099 | 0.3089 | 0.0745 |
|
101 |
+
| 0.0836 | 23.36 | 13200 | 0.3171 | 0.3048 | 0.0731 |
|
102 |
+
| 0.0796 | 24.07 | 13600 | 0.3158 | 0.3041 | 0.0733 |
|
103 |
+
| 0.0739 | 24.78 | 14000 | 0.3203 | 0.3003 | 0.0721 |
|
104 |
+
| 0.0739 | 25.49 | 14400 | 0.3138 | 0.2974 | 0.0713 |
|
105 |
+
| 0.0742 | 26.19 | 14800 | 0.3197 | 0.2959 | 0.0711 |
|
106 |
+
| 0.07 | 26.9 | 15200 | 0.3232 | 0.2952 | 0.0703 |
|
107 |
+
| 0.0654 | 27.61 | 15600 | 0.3243 | 0.2939 | 0.0701 |
|
108 |
+
| 0.0631 | 28.32 | 16000 | 0.3213 | 0.2876 | 0.0688 |
|
109 |
+
| 0.0631 | 29.03 | 16400 | 0.3151 | 0.2880 | 0.0685 |
|
110 |
+
| 0.0607 | 29.73 | 16800 | 0.3184 | 0.2867 | 0.0681 |
|
111 |
+
|
112 |
+
|
113 |
+
### Framework versions
|
114 |
+
|
115 |
+
- Transformers 4.26.0.dev0
|
116 |
+
- Pytorch 1.13.1+cu117
|
117 |
+
- Datasets 2.8.1.dev0
|
118 |
+
- Tokenizers 0.13.2
|