Safetensors
File size: 23,659 Bytes
a197764
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# --------------------------------------------------------
# InternVL
# Copyright (c) 2023 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------
import warnings
from typing import Any, List, Optional, Tuple, Union

import torch.utils.checkpoint
# from internvl.model.internlm2.modeling_internlm2 import InternLM2ForCausalLM
from .modeling_internlm2 import InternLM2ForCausalLM
from peft import LoraConfig, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
                          LlamaTokenizer)
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging

from .configuration_internvl_chat import InternVLChatConfig
from .modeling_intern_vit import InternVisionModel

logger = logging.get_logger(__name__)


class InternVLChatModel(PreTrainedModel):
    config_class = InternVLChatConfig
    main_input_name = 'pixel_values'
    _no_split_modules = ['InternVisionEncoderLayer', 'LlamaDecoderLayer']

    def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None):
        super().__init__(config)

        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        self.block_revise = config.block_revise

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            self.vision_model = InternVisionModel(config.vision_config)
        if language_model is not None:
            self.language_model = language_model
        else:
            if config.llm_config.architectures[0] == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.llm_config)
            elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
                self.language_model = InternLM2ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')

        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )

        if config.block_position_embedding is not None:
            max_len = config.block_max_len
            vit_output_size = vit_hidden_size * int(1 / self.downsample_ratio) ** 2
            if config.block_position_embedding == 'v1':
                self.position_embedding_block_x = nn.Parameter(torch.randn(1, max_len, vit_output_size))  # [block_h, block_w, channel]
                self.position_embedding_block_y = nn.Parameter(torch.randn(max_len, 1, vit_output_size))
            elif config.block_position_embedding == 'v2':
                position_embedding_blocks_x = torch.zeros(max_len, vit_output_size)
                position_embedding_blocks_y = torch.zeros(max_len, vit_output_size)
                position_embedding_blocks_x.requires_grad = False
                position_embedding_blocks_y.requires_grad = False

                pos = torch.arange(0, max_len).float().unsqueeze(dim=1)
                _2i = torch.arange(0, vit_output_size, step=2).float()

                position_embedding_blocks_x[:, 0::2] = torch.sin(pos / (10000 ** (_2i / vit_output_size)))
                position_embedding_blocks_x[:, 1::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size)))
                position_embedding_blocks_y[:, 0::2] = torch.cos(pos / (10000 ** (_2i / vit_output_size)))
                position_embedding_blocks_y[:, 1::2] = -torch.sin(pos / (10000 ** (_2i / vit_output_size)))

                self.register_buffer('position_embedding_block_x', position_embedding_blocks_x.view(1, max_len, vit_output_size), persistent=False)
                self.register_buffer('position_embedding_block_y', position_embedding_blocks_y.view(max_len, 1, vit_output_size), persistent=False)
                self.position_embedding_block_scale = nn.Parameter(torch.tensor(0.4531))  # self.position_embedding.data.mean() = 0.4531
            else:
                raise ValueError(f"Got unexcepted block_position_embedding {config.block_position_embedding}")
            
        # if config.force_image_size != config.vision_config.image_size:
        #     self.vision_model.resize_pos_embeddings(
        #         old_size=config.vision_config.image_size,
        #         new_size=config.force_image_size,
        #         patch_size=config.vision_config.patch_size
        #     )

        self.img_context_token_id = None
        self.neftune_alpha = None

        if config.use_backbone_lora:
            alpha = config.use_backbone_alpha if config.use_backbone_alpha > 0 else 2 * config.use_backbone_lora
            self.wrap_backbone_lora(r=config.use_backbone_lora, lora_alpha=alpha)

        if config.use_llm_lora:
            alpha = config.use_llm_alpha if config.use_llm_alpha > 0 else 2 * config.use_llm_lora
            self.wrap_llm_lora(r=config.use_llm_lora, lora_alpha=alpha)

    def wrap_backbone_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
        )
        self.vision_model = get_peft_model(self.vision_model, lora_config)
        self.vision_model.print_trainable_parameters()

    def wrap_llm_lora(self, r=128, lora_alpha=256, lora_dropout=0.05):
        lora_config = LoraConfig(
            r=r,
            # target_modules=['self_attn.q_proj', 'self_attn.k_proj', 'self_attn.v_proj', 'self_attn.o_proj',
            #                 'mlp.gate_proj', 'mlp.down_proj', 'mlp.up_proj'],
            target_modules = ['feed_forward.w1', 'feed_forward.w2', 'feed_forward.w3',
                              'attention.wo', 'attention.wqkv'],
            lora_alpha=lora_alpha,
            lora_dropout=lora_dropout,
            task_type='CAUSAL_LM'
        )
        self.language_model = get_peft_model(self.language_model, lora_config)
        self.language_model.enable_input_require_grads()
        self.language_model.print_trainable_parameters()

    # generate 不会经过 forward !!!!!
    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            target_aspect_ratio: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()

        vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio)
        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        # if torch.distributed.get_rank() == 0:
        #     print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            if not self.block_revise:
                input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
            else:
                vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5)
                vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1)
                start_idx = 0
                img_batch = []
                for block_num_w, block_num_h in target_aspect_ratio:
                    img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1)
                    img = img.permute(0, 2, 1, 3, 4).reshape(-1, C)  # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels]
                    img_batch.append(img)
                    start_idx += block_num_w * block_num_h
                vit_embeds = torch.cat(img_batch, dim=0)
                input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds

        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = selected.sum()
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5, target_aspect_ratio=None):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        
        # 2D position embedding
        if self.config.block_position_embedding is not None:
            if target_aspect_ratio is None:
                raise ValueError("Expected target_aspect_ratio when block_position_embedding is not None")
            
            if self.config.block_position_embedding in ['v1', 'v2']:
                vit_output_size = int(self.config.vision_config.hidden_size / (scale_factor * scale_factor))

                block_embed_x = []
                block_embed_y = []
                for ratio in target_aspect_ratio:  # ratio: (w, h)
                    block_embed_x_item = self.position_embedding_block_x[:, :ratio[0], :].repeat(ratio[1], 1, 1)  # [block_h, block_w, channel]
                    block_embed_y_item = self.position_embedding_block_y[:ratio[1], :, :].repeat(1, ratio[0], 1)

                    block_embed_x.append(block_embed_x_item.view(-1, 1, 1, vit_output_size))  # [block_h*block_w, 1, 1, channel]
                    block_embed_y.append(block_embed_y_item.view(-1, 1, 1, vit_output_size))

                block_embed_x = torch.cat(block_embed_x, 0)  # [B*block_h*block_w, 1, 1, channel]
                block_embed_y = torch.cat(block_embed_y, 0)

                # breakpoint()
                if self.config.block_position_embedding == 'v1':
                    x = x + block_embed_x + block_embed_y  # [B*block_h*block_w, width*height, channel]
                elif self.config.block_position_embedding == 'v2':
                    x = x + (block_embed_x + block_embed_y) * self.position_embedding_block_scale

        return x

    def noised_embed(self, vit_embeds, noise_alpha=5):
        dims = torch.tensor(vit_embeds.size(1) * vit_embeds.size(2))
        mag_norm = noise_alpha / torch.sqrt(dims)
        noise = torch.zeros_like(vit_embeds).uniform_(-mag_norm, mag_norm)
        return vit_embeds + noise

    def extract_feature(self, pixel_values, target_aspect_ratio=None):
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                target_aspect_ratio=target_aspect_ratio,
                output_hidden_states=False,
                return_dict=True).last_hidden_state
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                target_aspect_ratio=target_aspect_ratio,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        vit_embeds = vit_embeds[:, 1:, :]

        if self.training and self.neftune_alpha is not None:
            vit_embeds = self.noised_embed(vit_embeds, self.neftune_alpha)

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio, target_aspect_ratio=target_aspect_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)#.to(pixel_values.device)
        return vit_embeds

    def chat(self, tokenizer, pixel_values, question, generation_config, target_aspect_ratio=None, history=None, return_history=False,
             IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id
        if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
            eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')  # 92542, InternLM2
        else:
            eos_token_id = tokenizer.eos_token_id

        # from internvl.conversation import get_conv_template
        from .conversation import get_conv_template

        template = get_conv_template(self.template)
        image_bs = pixel_values.shape[0]
        # print(f'dynamic ViT batch size: {image_bs}')
        if history is None:
            history = []
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_bs + IMG_END_TOKEN
            question = image_tokens + '\n' + question
        else:
            for (old_question, old_answer) in history:
                template.append_message(template.roles[0], old_question)
                template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()
        model_inputs = tokenizer(query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            target_aspect_ratio=target_aspect_ratio,
            **generation_config
        )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        response = response.split('<|im_end|>')[0].strip()  # for InternLM2
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(image_tokens, '<image>')
            # print(query_to_print, response)
            return response
        return response

    def multi_image_chat(self, tokenizer, pixel_values, image_counts, question, generation_config, history=None,
                         return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>'):

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id
        if tokenizer.convert_tokens_to_ids('<|im_end|>') != 0:
            eos_token_id = tokenizer.convert_tokens_to_ids('<|im_end|>')  # 92542, InternLM2
        else:
            eos_token_id = tokenizer.eos_token_id

        # from internvl.conversation import get_conv_template
        from .conversation import get_conv_template

        template = get_conv_template(self.template)

        if history is None:
            history = []
            image_tokens = ''
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}, image_counts: {image_counts}')
            for idx, image_count in enumerate(image_counts):
                image_tokens += f'<image {idx+1}> (图{idx+1}):' + IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * image_count + IMG_END_TOKEN
            question = image_tokens + '\n' + question
        else:
            for (old_question, old_answer) in history:
                template.append_message(template.roles[0], old_question)
                template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()
        model_inputs = tokenizer(query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].cuda()
        attention_mask = model_inputs['attention_mask'].cuda()
        generation_config['eos_token_id'] = eos_token_id

        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        response = response.split('<|im_end|>')[0].strip()  # for InternLM2
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(image_tokens, '<image>')
            # print(query_to_print, response)
            return response
        return response

    @torch.no_grad()
    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            target_aspect_ratio: Optional[torch.LongTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values, target_aspect_ratio)

            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            if not self.block_revise:
                input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
            else:
                vit_embeds_h = vit_embeds_w = int(vit_embeds.shape[1] ** 0.5)
                vit_embeds = vit_embeds.view(vit_embeds.shape[0], vit_embeds_h, vit_embeds_w, -1)
                start_idx = 0
                img_batch = []
                for block_num_w, block_num_h in target_aspect_ratio:
                    img = vit_embeds[start_idx: start_idx + block_num_w * block_num_h].view(block_num_h, block_num_w, vit_embeds_h, vit_embeds_w, -1)
                    img = img.permute(0, 2, 1, 3, 4).reshape(-1, C)  # [block_num_h * vit_embeds_h * block_num_w * vit_embeds_w, channels]
                    img_batch.append(img)
                    start_idx += block_num_w * block_num_h
                vit_embeds = torch.cat(img_batch, dim=0)
                input_embeds[selected] = vit_embeds.to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        # transformers 在 train 中 eval 的一些考虑不足的地方
        # 数据集中 __getitem__ 出来的所有键值,不在 position args 中的,
        # 会跑到 keyword args 中,也就是这里的 generate_kwargs
        if 'image_flags' in generate_kwargs:
            generate_kwargs.pop('image_flags')

        generate_kwargs_new = {
            "num_beams": 1,
            "max_new_tokens": 1024,
            "min_new_tokens": 1,
            "do_sample": True,
            "temperature": 0.8,
            "eos_token_id": 92542,
        }
        generate_kwargs_new.update(**generate_kwargs)
        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            use_cache=True,
            **generate_kwargs_new,
        )

        return outputs