File size: 2,061 Bytes
166dfd3 1257aa4 166dfd3 1257aa4 b307fc1 1257aa4 d2ddcf0 166dfd3 1e563cd b307fc1 d2ddcf0 b307fc1 166dfd3 1e563cd 1257aa4 d2ddcf0 1e563cd 166dfd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 48.562
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-base-samsum
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3743
- Rouge1: 48.562
- Rouge2: 25.0327
- Rougel: 39.1235
- Rougelsum: 45.0049
- Gen Len: 36.8362
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.4116 | 1.0 | 1842 | 1.3851 | 48.539 | 25.203 | 39.2261 | 45.201 | 36.8753 |
| 1.3387 | 2.0 | 3684 | 1.3743 | 48.562 | 25.0327 | 39.1235 | 45.0049 | 36.8362 |
| 1.3189 | 3.0 | 5526 | 1.3748 | 48.7279 | 25.0598 | 39.1658 | 45.1284 | 36.9438 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|