Model save
Browse files- README.md +53 -188
- config.json +23 -23
- model.safetensors +1 -1
- special_tokens_map.json +5 -35
- tokenizer.json +14 -2
- training_args.bin +2 -2
README.md
CHANGED
@@ -1,210 +1,75 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
language:
|
7 |
-
- ne
|
8 |
metrics:
|
9 |
-
-
|
10 |
- recall
|
11 |
- f1
|
12 |
-
|
13 |
-
-
|
14 |
-
|
|
|
15 |
---
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
## Model Details
|
24 |
-
|
25 |
-
### Model Description
|
26 |
-
|
27 |
-
<!-- Provide a longer summary of what this model is. -->
|
28 |
-
|
29 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
30 |
-
|
31 |
-
- **Developed by:** [More Information Needed]
|
32 |
-
- **Funded by [optional]:** [More Information Needed]
|
33 |
-
- **Shared by [optional]:** [More Information Needed]
|
34 |
-
- **Model type:** [More Information Needed]
|
35 |
-
- **Language(s) (NLP):** [More Information Needed]
|
36 |
-
- **License:** [More Information Needed]
|
37 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
38 |
-
|
39 |
-
### Model Sources [optional]
|
40 |
-
|
41 |
-
<!-- Provide the basic links for the model. -->
|
42 |
-
|
43 |
-
- **Repository:** [More Information Needed]
|
44 |
-
- **Paper [optional]:** [More Information Needed]
|
45 |
-
- **Demo [optional]:** [More Information Needed]
|
46 |
-
|
47 |
-
## Uses
|
48 |
-
|
49 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
50 |
-
|
51 |
-
### Direct Use
|
52 |
-
|
53 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
54 |
-
|
55 |
-
[More Information Needed]
|
56 |
-
|
57 |
-
### Downstream Use [optional]
|
58 |
-
|
59 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
60 |
-
|
61 |
-
[More Information Needed]
|
62 |
-
|
63 |
-
### Out-of-Scope Use
|
64 |
-
|
65 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
66 |
-
|
67 |
-
[More Information Needed]
|
68 |
-
|
69 |
-
## Bias, Risks, and Limitations
|
70 |
-
|
71 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
72 |
-
|
73 |
-
[More Information Needed]
|
74 |
-
|
75 |
-
### Recommendations
|
76 |
-
|
77 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
78 |
-
|
79 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
80 |
-
|
81 |
-
## How to Get Started with the Model
|
82 |
-
|
83 |
-
Use the code below to get started with the model.
|
84 |
-
|
85 |
-
[More Information Needed]
|
86 |
-
|
87 |
-
## Training Details
|
88 |
-
|
89 |
-
### Training Data
|
90 |
-
|
91 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
92 |
-
|
93 |
-
[More Information Needed]
|
94 |
-
|
95 |
-
### Training Procedure
|
96 |
-
|
97 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
98 |
-
|
99 |
-
#### Preprocessing [optional]
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
|
104 |
-
#### Training Hyperparameters
|
105 |
-
|
106 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
107 |
-
|
108 |
-
#### Speeds, Sizes, Times [optional]
|
109 |
-
|
110 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
111 |
-
|
112 |
-
[More Information Needed]
|
113 |
-
|
114 |
-
## Evaluation
|
115 |
-
|
116 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
117 |
-
|
118 |
-
### Testing Data, Factors & Metrics
|
119 |
-
|
120 |
-
#### Testing Data
|
121 |
-
|
122 |
-
<!-- This should link to a Dataset Card if possible. -->
|
123 |
-
|
124 |
-
[More Information Needed]
|
125 |
-
|
126 |
-
#### Factors
|
127 |
-
|
128 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
129 |
-
|
130 |
-
[More Information Needed]
|
131 |
-
|
132 |
-
#### Metrics
|
133 |
-
|
134 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
135 |
-
|
136 |
-
[More Information Needed]
|
137 |
-
|
138 |
-
### Results
|
139 |
-
|
140 |
-
[More Information Needed]
|
141 |
-
|
142 |
-
#### Summary
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
## Model Examination [optional]
|
147 |
-
|
148 |
-
<!-- Relevant interpretability work for the model goes here -->
|
149 |
-
|
150 |
-
[More Information Needed]
|
151 |
-
|
152 |
-
## Environmental Impact
|
153 |
-
|
154 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
155 |
-
|
156 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
157 |
-
|
158 |
-
- **Hardware Type:** [More Information Needed]
|
159 |
-
- **Hours used:** [More Information Needed]
|
160 |
-
- **Cloud Provider:** [More Information Needed]
|
161 |
-
- **Compute Region:** [More Information Needed]
|
162 |
-
- **Carbon Emitted:** [More Information Needed]
|
163 |
-
|
164 |
-
## Technical Specifications [optional]
|
165 |
-
|
166 |
-
### Model Architecture and Objective
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
-
|
170 |
-
### Compute Infrastructure
|
171 |
-
|
172 |
-
[More Information Needed]
|
173 |
-
|
174 |
-
#### Hardware
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
#### Software
|
179 |
|
180 |
-
|
181 |
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
|
186 |
-
|
187 |
|
188 |
-
|
189 |
|
190 |
-
|
191 |
|
192 |
-
|
193 |
|
194 |
-
|
195 |
|
196 |
-
|
197 |
|
198 |
-
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
203 |
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
206 |
-
[More Information Needed]
|
207 |
|
208 |
-
|
209 |
|
210 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert/distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
+
- precision
|
8 |
- recall
|
9 |
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: distilbert-Nepali-NER
|
13 |
+
results: []
|
14 |
---
|
15 |
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
# distilbert-Nepali-NER
|
20 |
|
21 |
+
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2917
|
24 |
+
- Precision: 0.0843
|
25 |
+
- Recall: 0.0538
|
26 |
+
- F1: 0.0657
|
27 |
+
- Accuracy: 0.9259
|
28 |
|
29 |
+
## Model description
|
30 |
|
31 |
+
More information needed
|
32 |
|
33 |
+
## Intended uses & limitations
|
34 |
|
35 |
+
More information needed
|
36 |
|
37 |
+
## Training and evaluation data
|
38 |
|
39 |
+
More information needed
|
40 |
|
41 |
+
## Training procedure
|
42 |
|
43 |
+
### Training hyperparameters
|
44 |
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 64
|
48 |
+
- eval_batch_size: 32
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
|
54 |
+
### Training results
|
55 |
|
56 |
+
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
|
58 |
+
| No log | 0.92 | 200 | 0.8685 | 0.0 | 0.4700 | 0.0 | 0.0 |
|
59 |
+
| No log | 1.84 | 400 | 0.8984 | 0.0135 | 0.3581 | 0.0556 | 0.0077 |
|
60 |
+
| 0.4549 | 2.76 | 600 | 0.9087 | 0.0361 | 0.3188 | 0.0833 | 0.0231 |
|
61 |
+
| 0.4549 | 3.69 | 800 | 0.9111 | 0.0460 | 0.3040 | 0.0909 | 0.0308 |
|
62 |
+
| 0.2088 | 4.61 | 1000 | 0.9173 | 0.0396 | 0.2972 | 0.0556 | 0.0308 |
|
63 |
+
| 0.2088 | 5.53 | 1200 | 0.3065 | 0.0721 | 0.0615 | 0.0664 | 0.9100 |
|
64 |
+
| 0.2088 | 6.45 | 1400 | 0.2924 | 0.1724 | 0.0769 | 0.1064 | 0.9212 |
|
65 |
+
| 0.1601 | 7.37 | 1600 | 0.2929 | 0.0745 | 0.0538 | 0.0625 | 0.9234 |
|
66 |
+
| 0.1601 | 8.29 | 1800 | 0.2903 | 0.0893 | 0.0385 | 0.0538 | 0.9257 |
|
67 |
+
| 0.1114 | 9.22 | 2000 | 0.2917 | 0.0843 | 0.0538 | 0.0657 | 0.9259 |
|
68 |
|
|
|
69 |
|
70 |
+
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.39.1
|
73 |
+
- Pytorch 2.2.2+cu121
|
74 |
+
- Datasets 2.18.0
|
75 |
+
- Tokenizers 0.15.2
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertForTokenClassification"
|
@@ -9,31 +9,31 @@
|
|
9 |
"dropout": 0.1,
|
10 |
"hidden_dim": 3072,
|
11 |
"id2label": {
|
12 |
-
"0": "
|
13 |
-
"1": "
|
14 |
-
"2": "
|
15 |
-
"3": "
|
16 |
-
"4": "
|
17 |
-
"5": "
|
18 |
-
"6": "
|
19 |
-
"7": "
|
20 |
-
"8": "
|
21 |
-
"9": "
|
22 |
-
"10": "
|
23 |
},
|
24 |
"initializer_range": 0.02,
|
25 |
"label2id": {
|
26 |
-
"
|
27 |
-
"
|
28 |
-
"
|
29 |
-
"
|
30 |
-
"
|
31 |
-
"
|
32 |
-
"
|
33 |
-
"
|
34 |
-
"
|
35 |
-
"
|
36 |
-
"
|
37 |
},
|
38 |
"max_position_embeddings": 512,
|
39 |
"model_type": "distilbert",
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "distilbert/distilbert-base-uncased",
|
3 |
"activation": "gelu",
|
4 |
"architectures": [
|
5 |
"DistilBertForTokenClassification"
|
|
|
9 |
"dropout": 0.1,
|
10 |
"hidden_dim": 3072,
|
11 |
"id2label": {
|
12 |
+
"0": "LABEL_0",
|
13 |
+
"1": "LABEL_1",
|
14 |
+
"2": "LABEL_2",
|
15 |
+
"3": "LABEL_3",
|
16 |
+
"4": "LABEL_4",
|
17 |
+
"5": "LABEL_5",
|
18 |
+
"6": "LABEL_6",
|
19 |
+
"7": "LABEL_7",
|
20 |
+
"8": "LABEL_8",
|
21 |
+
"9": "LABEL_9",
|
22 |
+
"10": "LABEL_10"
|
23 |
},
|
24 |
"initializer_range": 0.02,
|
25 |
"label2id": {
|
26 |
+
"LABEL_0": 0,
|
27 |
+
"LABEL_1": 1,
|
28 |
+
"LABEL_10": 10,
|
29 |
+
"LABEL_2": 2,
|
30 |
+
"LABEL_3": 3,
|
31 |
+
"LABEL_4": 4,
|
32 |
+
"LABEL_5": 5,
|
33 |
+
"LABEL_6": 6,
|
34 |
+
"LABEL_7": 7,
|
35 |
+
"LABEL_8": 8,
|
36 |
+
"LABEL_9": 9
|
37 |
},
|
38 |
"max_position_embeddings": 512,
|
39 |
"model_type": "distilbert",
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 265497700
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f8fa1e67e55f9824ff7bfe5d5cc1757ee206863786cec639f300edc44d38155
|
3 |
size 265497700
|
special_tokens_map.json
CHANGED
@@ -1,37 +1,7 @@
|
|
1 |
{
|
2 |
-
"cls_token":
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"mask_token": {
|
10 |
-
"content": "[MASK]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "[PAD]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"sep_token": {
|
24 |
-
"content": "[SEP]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"unk_token": {
|
31 |
-
"content": "[UNK]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
}
|
37 |
}
|
|
|
1 |
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
}
|
tokenizer.json
CHANGED
@@ -1,7 +1,19 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": {
|
4 |
+
"direction": "Right",
|
5 |
+
"max_length": 512,
|
6 |
+
"strategy": "LongestFirst",
|
7 |
+
"stride": 0
|
8 |
+
},
|
9 |
+
"padding": {
|
10 |
+
"strategy": "BatchLongest",
|
11 |
+
"direction": "Right",
|
12 |
+
"pad_to_multiple_of": null,
|
13 |
+
"pad_id": 0,
|
14 |
+
"pad_type_id": 0,
|
15 |
+
"pad_token": "[PAD]"
|
16 |
+
},
|
17 |
"added_tokens": [
|
18 |
{
|
19 |
"id": 0,
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e92d4e45539f0fc76895f7acf4e23489e3565329b6c38723e47248c453b695d0
|
3 |
+
size 4984
|