Saugatkafley commited on
Commit
9a5e1ad
·
verified ·
1 Parent(s): 69f4dce

Model save

Browse files
Files changed (6) hide show
  1. README.md +53 -188
  2. config.json +23 -23
  3. model.safetensors +1 -1
  4. special_tokens_map.json +5 -35
  5. tokenizer.json +14 -2
  6. training_args.bin +2 -2
README.md CHANGED
@@ -1,210 +1,75 @@
1
  ---
2
- library_name: transformers
3
- pipeline_tag: token-classification
4
- basemodel: distilbert/distilbert-base-uncased
5
- license: mit
6
- language:
7
- - ne
8
  metrics:
9
- - accuracy
10
  - recall
11
  - f1
12
- widget:
13
- - text: "चितवन को खैरहनी मा मेगा बैंक को शाखारहित बैंकिङ सेवा"
14
- example_title: Example-1
 
15
  ---
16
 
17
- # Model Card for Model ID
18
-
19
- <!-- Provide a quick summary of what the model is/does. -->
20
-
21
-
22
-
23
- ## Model Details
24
-
25
- ### Model Description
26
-
27
- <!-- Provide a longer summary of what this model is. -->
28
-
29
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
30
-
31
- - **Developed by:** [More Information Needed]
32
- - **Funded by [optional]:** [More Information Needed]
33
- - **Shared by [optional]:** [More Information Needed]
34
- - **Model type:** [More Information Needed]
35
- - **Language(s) (NLP):** [More Information Needed]
36
- - **License:** [More Information Needed]
37
- - **Finetuned from model [optional]:** [More Information Needed]
38
-
39
- ### Model Sources [optional]
40
-
41
- <!-- Provide the basic links for the model. -->
42
-
43
- - **Repository:** [More Information Needed]
44
- - **Paper [optional]:** [More Information Needed]
45
- - **Demo [optional]:** [More Information Needed]
46
-
47
- ## Uses
48
-
49
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
50
-
51
- ### Direct Use
52
-
53
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
54
-
55
- [More Information Needed]
56
-
57
- ### Downstream Use [optional]
58
-
59
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
60
-
61
- [More Information Needed]
62
-
63
- ### Out-of-Scope Use
64
-
65
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
66
-
67
- [More Information Needed]
68
-
69
- ## Bias, Risks, and Limitations
70
-
71
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
72
-
73
- [More Information Needed]
74
-
75
- ### Recommendations
76
-
77
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
78
-
79
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
80
-
81
- ## How to Get Started with the Model
82
-
83
- Use the code below to get started with the model.
84
-
85
- [More Information Needed]
86
-
87
- ## Training Details
88
-
89
- ### Training Data
90
-
91
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
92
-
93
- [More Information Needed]
94
-
95
- ### Training Procedure
96
-
97
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
98
-
99
- #### Preprocessing [optional]
100
-
101
- [More Information Needed]
102
-
103
-
104
- #### Training Hyperparameters
105
-
106
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
107
-
108
- #### Speeds, Sizes, Times [optional]
109
-
110
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
111
-
112
- [More Information Needed]
113
-
114
- ## Evaluation
115
-
116
- <!-- This section describes the evaluation protocols and provides the results. -->
117
-
118
- ### Testing Data, Factors & Metrics
119
-
120
- #### Testing Data
121
-
122
- <!-- This should link to a Dataset Card if possible. -->
123
-
124
- [More Information Needed]
125
-
126
- #### Factors
127
-
128
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
129
-
130
- [More Information Needed]
131
-
132
- #### Metrics
133
-
134
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
135
-
136
- [More Information Needed]
137
-
138
- ### Results
139
-
140
- [More Information Needed]
141
-
142
- #### Summary
143
-
144
-
145
-
146
- ## Model Examination [optional]
147
-
148
- <!-- Relevant interpretability work for the model goes here -->
149
-
150
- [More Information Needed]
151
-
152
- ## Environmental Impact
153
-
154
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
155
-
156
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
157
-
158
- - **Hardware Type:** [More Information Needed]
159
- - **Hours used:** [More Information Needed]
160
- - **Cloud Provider:** [More Information Needed]
161
- - **Compute Region:** [More Information Needed]
162
- - **Carbon Emitted:** [More Information Needed]
163
-
164
- ## Technical Specifications [optional]
165
-
166
- ### Model Architecture and Objective
167
-
168
- [More Information Needed]
169
-
170
- ### Compute Infrastructure
171
-
172
- [More Information Needed]
173
-
174
- #### Hardware
175
-
176
- [More Information Needed]
177
-
178
- #### Software
179
 
180
- [More Information Needed]
181
 
182
- ## Citation [optional]
 
 
 
 
 
 
183
 
184
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
185
 
186
- **BibTeX:**
187
 
188
- [More Information Needed]
189
 
190
- **APA:**
191
 
192
- [More Information Needed]
193
 
194
- ## Glossary [optional]
195
 
196
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
197
 
198
- [More Information Needed]
199
 
200
- ## More Information [optional]
 
 
 
 
 
 
 
201
 
202
- [More Information Needed]
203
 
204
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
 
205
 
206
- [More Information Needed]
207
 
208
- ## Model Card Contact
209
 
210
- [More Information Needed]
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: distilbert/distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
 
 
6
  metrics:
7
+ - precision
8
  - recall
9
  - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: distilbert-Nepali-NER
13
+ results: []
14
  ---
15
 
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ # distilbert-Nepali-NER
20
 
21
+ This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2917
24
+ - Precision: 0.0843
25
+ - Recall: 0.0538
26
+ - F1: 0.0657
27
+ - Accuracy: 0.9259
28
 
29
+ ## Model description
30
 
31
+ More information needed
32
 
33
+ ## Intended uses & limitations
34
 
35
+ More information needed
36
 
37
+ ## Training and evaluation data
38
 
39
+ More information needed
40
 
41
+ ## Training procedure
42
 
43
+ ### Training hyperparameters
44
 
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
 
54
+ ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
58
+ | No log | 0.92 | 200 | 0.8685 | 0.0 | 0.4700 | 0.0 | 0.0 |
59
+ | No log | 1.84 | 400 | 0.8984 | 0.0135 | 0.3581 | 0.0556 | 0.0077 |
60
+ | 0.4549 | 2.76 | 600 | 0.9087 | 0.0361 | 0.3188 | 0.0833 | 0.0231 |
61
+ | 0.4549 | 3.69 | 800 | 0.9111 | 0.0460 | 0.3040 | 0.0909 | 0.0308 |
62
+ | 0.2088 | 4.61 | 1000 | 0.9173 | 0.0396 | 0.2972 | 0.0556 | 0.0308 |
63
+ | 0.2088 | 5.53 | 1200 | 0.3065 | 0.0721 | 0.0615 | 0.0664 | 0.9100 |
64
+ | 0.2088 | 6.45 | 1400 | 0.2924 | 0.1724 | 0.0769 | 0.1064 | 0.9212 |
65
+ | 0.1601 | 7.37 | 1600 | 0.2929 | 0.0745 | 0.0538 | 0.0625 | 0.9234 |
66
+ | 0.1601 | 8.29 | 1800 | 0.2903 | 0.0893 | 0.0385 | 0.0538 | 0.9257 |
67
+ | 0.1114 | 9.22 | 2000 | 0.2917 | 0.0843 | 0.0538 | 0.0657 | 0.9259 |
68
 
 
69
 
70
+ ### Framework versions
71
 
72
+ - Transformers 4.39.1
73
+ - Pytorch 2.2.2+cu121
74
+ - Datasets 2.18.0
75
+ - Tokenizers 0.15.2
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "../models/Nepali-NER",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertForTokenClassification"
@@ -9,31 +9,31 @@
9
  "dropout": 0.1,
10
  "hidden_dim": 3072,
11
  "id2label": {
12
- "0": "O",
13
- "1": "B-Location",
14
- "2": "I-Organization",
15
- "3": "B-Person",
16
- "4": "B-Event",
17
- "5": "B-Organization",
18
- "6": "I-Person",
19
- "7": "B-Date",
20
- "8": "I-Date",
21
- "9": "I-Event",
22
- "10": "I-Location"
23
  },
24
  "initializer_range": 0.02,
25
  "label2id": {
26
- "B-Date": "7",
27
- "B-Event": "4",
28
- "B-Location": "1",
29
- "B-Organization": "5",
30
- "B-Person": "3",
31
- "I-Date": "8",
32
- "I-Event": "9",
33
- "I-Location": "10",
34
- "I-Organization": "2",
35
- "I-Person": "6",
36
- "O": "0"
37
  },
38
  "max_position_embeddings": 512,
39
  "model_type": "distilbert",
 
1
  {
2
+ "_name_or_path": "distilbert/distilbert-base-uncased",
3
  "activation": "gelu",
4
  "architectures": [
5
  "DistilBertForTokenClassification"
 
9
  "dropout": 0.1,
10
  "hidden_dim": 3072,
11
  "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2",
15
+ "3": "LABEL_3",
16
+ "4": "LABEL_4",
17
+ "5": "LABEL_5",
18
+ "6": "LABEL_6",
19
+ "7": "LABEL_7",
20
+ "8": "LABEL_8",
21
+ "9": "LABEL_9",
22
+ "10": "LABEL_10"
23
  },
24
  "initializer_range": 0.02,
25
  "label2id": {
26
+ "LABEL_0": 0,
27
+ "LABEL_1": 1,
28
+ "LABEL_10": 10,
29
+ "LABEL_2": 2,
30
+ "LABEL_3": 3,
31
+ "LABEL_4": 4,
32
+ "LABEL_5": 5,
33
+ "LABEL_6": 6,
34
+ "LABEL_7": 7,
35
+ "LABEL_8": 8,
36
+ "LABEL_9": 9
37
  },
38
  "max_position_embeddings": 512,
39
  "model_type": "distilbert",
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2ba5caed55f0fb75b95b3b348c720f9ec695ab9f090c5bd7237c97f17fed7467
3
  size 265497700
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f8fa1e67e55f9824ff7bfe5d5cc1757ee206863786cec639f300edc44d38155
3
  size 265497700
special_tokens_map.json CHANGED
@@ -1,37 +1,7 @@
1
  {
2
- "cls_token": {
3
- "content": "[CLS]",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "mask_token": {
10
- "content": "[MASK]",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "[PAD]",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "sep_token": {
24
- "content": "[SEP]",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- },
30
- "unk_token": {
31
- "content": "[UNK]",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false
36
- }
37
  }
 
1
  {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  }
tokenizer.json CHANGED
@@ -1,7 +1,19 @@
1
  {
2
  "version": "1.0",
3
- "truncation": null,
4
- "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": {
4
+ "direction": "Right",
5
+ "max_length": 512,
6
+ "strategy": "LongestFirst",
7
+ "stride": 0
8
+ },
9
+ "padding": {
10
+ "strategy": "BatchLongest",
11
+ "direction": "Right",
12
+ "pad_to_multiple_of": null,
13
+ "pad_id": 0,
14
+ "pad_type_id": 0,
15
+ "pad_token": "[PAD]"
16
+ },
17
  "added_tokens": [
18
  {
19
  "id": 0,
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d856bc317a34b2530dcb5788c87a2203fd4d52eb4aaa0d869a7b46342846994e
3
- size 4920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92d4e45539f0fc76895f7acf4e23489e3565329b6c38723e47248c453b695d0
3
+ size 4984