SarvasvaK commited on
Commit
a06c26a
·
1 Parent(s): c926132

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -4.05 +/- 1.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30aabfcbcf0ccca148f75821c2f5fb4b05de988713814a60bdaf2de6a81ce58d
3
+ size 108071
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbfaf323820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7fbfaf31cb40>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1677670967074823263,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAygKYvxVYxL/YjEQ/HmnWv8yRjD65OEQ/i3yuv8DtGb80Sbk9EItiPkM1Or5IKWQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]]",
60
+ "desired_goal": "[[-1.1875851 -1.533938 0.7677741 ]\n [-1.6750829 0.27454984 0.7664905 ]\n [-1.3631757 -0.601284 0.09047166]\n [ 0.2212336 -0.1818438 0.8912549 ]]",
61
+ "observation": "[[3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1ybLPYAsnL3NIYI+wueyPQd56b1wOn8+s4EOPhlAsj10VMI8x6YQvhG+tL2W/sE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.09919517 -0.07625675 0.25416413]\n [ 0.08735611 -0.11400037 0.24924636]\n [ 0.13916664 0.08703632 0.02372191]\n [-0.1412612 -0.08825315 0.02368097]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInUgw1cyKEsCUhpRSlIwBbJRLMowBdJRHQKoJuP5HmRx1fZQoaAZoCWgPQwiMFTWYhqEIwJSGlFKUaBVLMmgWR0CqCWRpL26DdX2UKGgGaAloD0MIHebLC7A/EsCUhpRSlGgVSzJoFkdAqgkJJf6XSnV9lChoBmgJaA9DCPhrskY9BBDAlIaUUpRoFUsyaBZHQKoIspbUwzt1fZQoaAZoCWgPQwg6kst/SF8KwJSGlFKUaBVLMmgWR0CqC3QfZElWdX2UKGgGaAloD0MIsyPVd34xD8CUhpRSlGgVSzJoFkdAqgsfS4OMEXV9lChoBmgJaA9DCMnnFU890ve/lIaUUpRoFUsyaBZHQKoKxBdD6WR1fZQoaAZoCWgPQwitFW2Oc1sRwJSGlFKUaBVLMmgWR0CqCm2dNFjNdX2UKGgGaAloD0MIpg9dUN/yC8CUhpRSlGgVSzJoFkdAqg0sjs2NvXV9lChoBmgJaA9DCJdV2AxwwQLAlIaUUpRoFUsyaBZHQKoM17aZhKF1fZQoaAZoCWgPQwg5m44AbnYRwJSGlFKUaBVLMmgWR0CqDHxceKbbdX2UKGgGaAloD0MIpwcFpWiFBsCUhpRSlGgVSzJoFkdAqgwl5t3wC3V9lChoBmgJaA9DCPZ+ox03nAjAlIaUUpRoFUsyaBZHQKoO4IWxhUl1fZQoaAZoCWgPQwh/9iNFZDgEwJSGlFKUaBVLMmgWR0CqDowT238XdX2UKGgGaAloD0MIYJSgv9DjA8CUhpRSlGgVSzJoFkdAqg4xKL8763V9lChoBmgJaA9DCAkaM4l6kRDAlIaUUpRoFUsyaBZHQKoN2yEcsDp1fZQoaAZoCWgPQwjtgsE1d3QFwJSGlFKUaBVLMmgWR0CqEKLQHAymdX2UKGgGaAloD0MIr0LKT6q9+7+UhpRSlGgVSzJoFkdAqhBO4y44InV9lChoBmgJaA9DCHLfap24nAPAlIaUUpRoFUsyaBZHQKoP9DZ13dN1fZQoaAZoCWgPQwjBqQ8k7xwPwJSGlFKUaBVLMmgWR0CqD53r+o9+dX2UKGgGaAloD0MIEDy+vWuQC8CUhpRSlGgVSzJoFkdAqhJqIxgy/XV9lChoBmgJaA9DCLoxPWGJRwTAlIaUUpRoFUsyaBZHQKoSFzPrv9d1fZQoaAZoCWgPQwjW/znMlxcHwJSGlFKUaBVLMmgWR0CqEbwpON5udX2UKGgGaAloD0MIv/G1Z5ZE/b+UhpRSlGgVSzJoFkdAqhFlxMnJDHV9lChoBmgJaA9DCNjV5CmreRDAlIaUUpRoFUsyaBZHQKoTcZUkv9N1fZQoaAZoCWgPQwj4pumzA84AwJSGlFKUaBVLMmgWR0CqExwUpNKzdX2UKGgGaAloD0MIoG6gwDu5+7+UhpRSlGgVSzJoFkdAqhK/+4smOXV9lChoBmgJaA9DCK+WOzPBEAzAlIaUUpRoFUsyaBZHQKoSaOqebut1fZQoaAZoCWgPQwi4H/DAABITwJSGlFKUaBVLMmgWR0CqFGWpIczZdX2UKGgGaAloD0MIgLVq14TkEsCUhpRSlGgVSzJoFkdAqhQQIfKZD3V9lChoBmgJaA9DCNUkeEMa1QPAlIaUUpRoFUsyaBZHQKoTtFkxyn11fZQoaAZoCWgPQwjhCb3+JD7+v5SGlFKUaBVLMmgWR0CqE11nEl3RdX2UKGgGaAloD0MImQ8IdCZ9EsCUhpRSlGgVSzJoFkdAqhVkGxD9fnV9lChoBmgJaA9DCJfK2xFO6wTAlIaUUpRoFUsyaBZHQKoVDoMa0hN1fZQoaAZoCWgPQwhh+8kYH2YQwJSGlFKUaBVLMmgWR0CqFLKWszVMdX2UKGgGaAloD0MIlGk0uRiDAMCUhpRSlGgVSzJoFkdAqhRbVpblinV9lChoBmgJaA9DCEWCqWbWkhDAlIaUUpRoFUsyaBZHQKoWYbzbvgF1fZQoaAZoCWgPQwif5uRFJoAEwJSGlFKUaBVLMmgWR0CqFgxzzVc2dX2UKGgGaAloD0MIvQD76NQlEsCUhpRSlGgVSzJoFkdAqhWwhyKekHV9lChoBmgJaA9DCNxifm5oihHAlIaUUpRoFUsyaBZHQKoVWa99MK11fZQoaAZoCWgPQwhn1HyVfCz5v5SGlFKUaBVLMmgWR0CqF2M7U5MldX2UKGgGaAloD0MIBp0QOuiS+L+UhpRSlGgVSzJoFkdAqhcN/e+EiHV9lChoBmgJaA9DCK1rtBzoIQrAlIaUUpRoFUsyaBZHQKoWshHLA591fZQoaAZoCWgPQwhHOZhNgOESwJSGlFKUaBVLMmgWR0CqFlrS/j82dX2UKGgGaAloD0MIa7ddaK5TCcCUhpRSlGgVSzJoFkdAqhhjVFx4p3V9lChoBmgJaA9DCN9wH7k16QnAlIaUUpRoFUsyaBZHQKoYDc45tFd1fZQoaAZoCWgPQwjfF5eqtMUDwJSGlFKUaBVLMmgWR0CqF7G+j/ModX2UKGgGaAloD0MI1uJTAIxnAcCUhpRSlGgVSzJoFkdAqhdahnJ1aHV9lChoBmgJaA9DCP3AVZ5AmBPAlIaUUpRoFUsyaBZHQKoZWKYRdyF1fZQoaAZoCWgPQwh5sMVun5X/v5SGlFKUaBVLMmgWR0CqGQNpdrwfdX2UKGgGaAloD0MI1sbYCS+hCcCUhpRSlGgVSzJoFkdAqhinYnOSn3V9lChoBmgJaA9DCNWuCWmNIQ/AlIaUUpRoFUsyaBZHQKoYUDFqBVd1fZQoaAZoCWgPQwjpnnWNloP6v5SGlFKUaBVLMmgWR0CqGl8S5AhTdX2UKGgGaAloD0MIC0eQSrGjBMCUhpRSlGgVSzJoFkdAqhoJm03OwHV9lChoBmgJaA9DCAK8BRIU3xDAlIaUUpRoFUsyaBZHQKoZra/RE4N1fZQoaAZoCWgPQwhzgGCOHv8CwJSGlFKUaBVLMmgWR0CqGVafzz3AdX2UKGgGaAloD0MIDMufbwv2DMCUhpRSlGgVSzJoFkdAqhtZGhEjPnV9lChoBmgJaA9DCM8wtaUO0hLAlIaUUpRoFUsyaBZHQKobA7Dl5nl1fZQoaAZoCWgPQwhKJTyh19/7v5SGlFKUaBVLMmgWR0CqGqfVAiV0dX2UKGgGaAloD0MI7uh/uRZ9FcCUhpRSlGgVSzJoFkdAqhpQg7o0RHV9lChoBmgJaA9DCMNKBRVVvxrAlIaUUpRoFUsyaBZHQKocTELH+611fZQoaAZoCWgPQwheRxyygbT6v5SGlFKUaBVLMmgWR0CqG/b7sOXmdX2UKGgGaAloD0MIoMN8eQHmEcCUhpRSlGgVSzJoFkdAqhubAaef7XV9lChoBmgJaA9DCCU+d4L9txHAlIaUUpRoFUsyaBZHQKobRAE+xGF1fZQoaAZoCWgPQwgceLXcmSkNwJSGlFKUaBVLMmgWR0CqHTzWGyoodX2UKGgGaAloD0MIHeVgNgEGDMCUhpRSlGgVSzJoFkdAqhznNzKcNHV9lChoBmgJaA9DCNaoh2h0R/e/lIaUUpRoFUsyaBZHQKoci3AEdNp1fZQoaAZoCWgPQwg89x4uOT4RwJSGlFKUaBVLMmgWR0CqHDR7Z39rdX2UKGgGaAloD0MIUDqRYKqZA8CUhpRSlGgVSzJoFkdAqh44u01IiHV9lChoBmgJaA9DCJdXrrfNhBfAlIaUUpRoFUsyaBZHQKod4zguRLd1fZQoaAZoCWgPQwj8NVmjHmIDwJSGlFKUaBVLMmgWR0CqHYeB6KLsdX2UKGgGaAloD0MIIO9VKxM+CMCUhpRSlGgVSzJoFkdAqh0wjD8+A3V9lChoBmgJaA9DCGozTkNUIQPAlIaUUpRoFUsyaBZHQKofOHIp6Qh1fZQoaAZoCWgPQwhIcCNli+T8v5SGlFKUaBVLMmgWR0CqHuMl1KXfdX2UKGgGaAloD0MI6gYKvJNvB8CUhpRSlGgVSzJoFkdAqh6HOfNA1XV9lChoBmgJaA9DCH09X7NclgzAlIaUUpRoFUsyaBZHQKoeMEgW8Ad1fZQoaAZoCWgPQwjD2EKQg/IEwJSGlFKUaBVLMmgWR0CqIC6MaS9vdX2UKGgGaAloD0MInxwFiILZFMCUhpRSlGgVSzJoFkdAqh/ZEc81XXV9lChoBmgJaA9DCGyU9ZuJiQvAlIaUUpRoFUsyaBZHQKoffVGTcIt1fZQoaAZoCWgPQwgq4J7nT1v4v5SGlFKUaBVLMmgWR0CqHyYekpI+dX2UKGgGaAloD0MIopkn1xRoDsCUhpRSlGgVSzJoFkdAqiEnsHB1tHV9lChoBmgJaA9DCJpd91Yk5g7AlIaUUpRoFUsyaBZHQKog0iJO32F1fZQoaAZoCWgPQwi7KHrgY4AWwJSGlFKUaBVLMmgWR0CqIHYcvM8pdX2UKGgGaAloD0MI7IhDNpBOD8CUhpRSlGgVSzJoFkdAqiAe3hGYr3V9lChoBmgJaA9DCJC/tKhPsgfAlIaUUpRoFUsyaBZHQKoiIAlOXVt1fZQoaAZoCWgPQwj0+L1Nf9YBwJSGlFKUaBVLMmgWR0CqIcphfBvadX2UKGgGaAloD0MIixcLQ+T0BMCUhpRSlGgVSzJoFkdAqiFuXu3MIXV9lChoBmgJaA9DCLJiuDoA4vy/lIaUUpRoFUsyaBZHQKohF1e0G/x1fZQoaAZoCWgPQwhiMH+FzNUSwJSGlFKUaBVLMmgWR0CqIw7o8p1BdX2UKGgGaAloD0MICHWRQlk4AcCUhpRSlGgVSzJoFkdAqiK5RIjGDXV9lChoBmgJaA9DCCLElbN3hgbAlIaUUpRoFUsyaBZHQKoiXVsDW9V1fZQoaAZoCWgPQwjEeqNWmB4AwJSGlFKUaBVLMmgWR0CqIgYaxX4kdX2UKGgGaAloD0MIPs40YfupA8CUhpRSlGgVSzJoFkdAqiQHMMZxaXV9lChoBmgJaA9DCIZyol2FpBPAlIaUUpRoFUsyaBZHQKojscp9ZzR1fZQoaAZoCWgPQwgRrKqX33kSwJSGlFKUaBVLMmgWR0CqI1XjlxOtdX2UKGgGaAloD0MIyqXxC68UEMCUhpRSlGgVSzJoFkdAqiL+1UlzEXV9lChoBmgJaA9DCDE/NzRlRwXAlIaUUpRoFUsyaBZHQKok+938n/l1fZQoaAZoCWgPQwhWurvOhrwIwJSGlFKUaBVLMmgWR0CqJKa7EpAldX2UKGgGaAloD0MID2JnCp2XBMCUhpRSlGgVSzJoFkdAqiRKzw+dLHV9lChoBmgJaA9DCH1AoDNp8wrAlIaUUpRoFUsyaBZHQKoj88kleGB1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263dda3deea5aea43ddc941882b038a1f4503e0990456407c8e5d435509e5d93
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc5cddbd417c5a46ee5800984304facb7d184e7a1f713070e10df9e4a9d7bd6c
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fbfaf323820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fbfaf31cb40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677670967074823263, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/1NHFPp6AbDxZchs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAygKYvxVYxL/YjEQ/HmnWv8yRjD65OEQ/i3yuv8DtGb80Sbk9EItiPkM1Or5IKWQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDzU0cU+noBsPFlyGz84pIA88sMXOmLDTDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]\n [0.3863665 0.01443496 0.60721356]]", "desired_goal": "[[-1.1875851 -1.533938 0.7677741 ]\n [-1.6750829 0.27454984 0.7664905 ]\n [-1.3631757 -0.601284 0.09047166]\n [ 0.2212336 -0.1818438 0.8912549 ]]", "observation": "[[3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]\n [3.8636649e-01 1.4434962e-02 6.0721356e-01 1.5703306e-02 5.7893910e-04\n 1.2497755e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1ybLPYAsnL3NIYI+wueyPQd56b1wOn8+s4EOPhlAsj10VMI8x6YQvhG+tL2W/sE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09919517 -0.07625675 0.25416413]\n [ 0.08735611 -0.11400037 0.24924636]\n [ 0.13916664 0.08703632 0.02372191]\n [-0.1412612 -0.08825315 0.02368097]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInUgw1cyKEsCUhpRSlIwBbJRLMowBdJRHQKoJuP5HmRx1fZQoaAZoCWgPQwiMFTWYhqEIwJSGlFKUaBVLMmgWR0CqCWRpL26DdX2UKGgGaAloD0MIHebLC7A/EsCUhpRSlGgVSzJoFkdAqgkJJf6XSnV9lChoBmgJaA9DCPhrskY9BBDAlIaUUpRoFUsyaBZHQKoIspbUwzt1fZQoaAZoCWgPQwg6kst/SF8KwJSGlFKUaBVLMmgWR0CqC3QfZElWdX2UKGgGaAloD0MIsyPVd34xD8CUhpRSlGgVSzJoFkdAqgsfS4OMEXV9lChoBmgJaA9DCMnnFU890ve/lIaUUpRoFUsyaBZHQKoKxBdD6WR1fZQoaAZoCWgPQwitFW2Oc1sRwJSGlFKUaBVLMmgWR0CqCm2dNFjNdX2UKGgGaAloD0MIpg9dUN/yC8CUhpRSlGgVSzJoFkdAqg0sjs2NvXV9lChoBmgJaA9DCJdV2AxwwQLAlIaUUpRoFUsyaBZHQKoM17aZhKF1fZQoaAZoCWgPQwg5m44AbnYRwJSGlFKUaBVLMmgWR0CqDHxceKbbdX2UKGgGaAloD0MIpwcFpWiFBsCUhpRSlGgVSzJoFkdAqgwl5t3wC3V9lChoBmgJaA9DCPZ+ox03nAjAlIaUUpRoFUsyaBZHQKoO4IWxhUl1fZQoaAZoCWgPQwh/9iNFZDgEwJSGlFKUaBVLMmgWR0CqDowT238XdX2UKGgGaAloD0MIYJSgv9DjA8CUhpRSlGgVSzJoFkdAqg4xKL8763V9lChoBmgJaA9DCAkaM4l6kRDAlIaUUpRoFUsyaBZHQKoN2yEcsDp1fZQoaAZoCWgPQwjtgsE1d3QFwJSGlFKUaBVLMmgWR0CqEKLQHAymdX2UKGgGaAloD0MIr0LKT6q9+7+UhpRSlGgVSzJoFkdAqhBO4y44InV9lChoBmgJaA9DCHLfap24nAPAlIaUUpRoFUsyaBZHQKoP9DZ13dN1fZQoaAZoCWgPQwjBqQ8k7xwPwJSGlFKUaBVLMmgWR0CqD53r+o9+dX2UKGgGaAloD0MIEDy+vWuQC8CUhpRSlGgVSzJoFkdAqhJqIxgy/XV9lChoBmgJaA9DCLoxPWGJRwTAlIaUUpRoFUsyaBZHQKoSFzPrv9d1fZQoaAZoCWgPQwjW/znMlxcHwJSGlFKUaBVLMmgWR0CqEbwpON5udX2UKGgGaAloD0MIv/G1Z5ZE/b+UhpRSlGgVSzJoFkdAqhFlxMnJDHV9lChoBmgJaA9DCNjV5CmreRDAlIaUUpRoFUsyaBZHQKoTcZUkv9N1fZQoaAZoCWgPQwj4pumzA84AwJSGlFKUaBVLMmgWR0CqExwUpNKzdX2UKGgGaAloD0MIoG6gwDu5+7+UhpRSlGgVSzJoFkdAqhK/+4smOXV9lChoBmgJaA9DCK+WOzPBEAzAlIaUUpRoFUsyaBZHQKoSaOqebut1fZQoaAZoCWgPQwi4H/DAABITwJSGlFKUaBVLMmgWR0CqFGWpIczZdX2UKGgGaAloD0MIgLVq14TkEsCUhpRSlGgVSzJoFkdAqhQQIfKZD3V9lChoBmgJaA9DCNUkeEMa1QPAlIaUUpRoFUsyaBZHQKoTtFkxyn11fZQoaAZoCWgPQwjhCb3+JD7+v5SGlFKUaBVLMmgWR0CqE11nEl3RdX2UKGgGaAloD0MImQ8IdCZ9EsCUhpRSlGgVSzJoFkdAqhVkGxD9fnV9lChoBmgJaA9DCJfK2xFO6wTAlIaUUpRoFUsyaBZHQKoVDoMa0hN1fZQoaAZoCWgPQwhh+8kYH2YQwJSGlFKUaBVLMmgWR0CqFLKWszVMdX2UKGgGaAloD0MIlGk0uRiDAMCUhpRSlGgVSzJoFkdAqhRbVpblinV9lChoBmgJaA9DCEWCqWbWkhDAlIaUUpRoFUsyaBZHQKoWYbzbvgF1fZQoaAZoCWgPQwif5uRFJoAEwJSGlFKUaBVLMmgWR0CqFgxzzVc2dX2UKGgGaAloD0MIvQD76NQlEsCUhpRSlGgVSzJoFkdAqhWwhyKekHV9lChoBmgJaA9DCNxifm5oihHAlIaUUpRoFUsyaBZHQKoVWa99MK11fZQoaAZoCWgPQwhn1HyVfCz5v5SGlFKUaBVLMmgWR0CqF2M7U5MldX2UKGgGaAloD0MIBp0QOuiS+L+UhpRSlGgVSzJoFkdAqhcN/e+EiHV9lChoBmgJaA9DCK1rtBzoIQrAlIaUUpRoFUsyaBZHQKoWshHLA591fZQoaAZoCWgPQwhHOZhNgOESwJSGlFKUaBVLMmgWR0CqFlrS/j82dX2UKGgGaAloD0MIa7ddaK5TCcCUhpRSlGgVSzJoFkdAqhhjVFx4p3V9lChoBmgJaA9DCN9wH7k16QnAlIaUUpRoFUsyaBZHQKoYDc45tFd1fZQoaAZoCWgPQwjfF5eqtMUDwJSGlFKUaBVLMmgWR0CqF7G+j/ModX2UKGgGaAloD0MI1uJTAIxnAcCUhpRSlGgVSzJoFkdAqhdahnJ1aHV9lChoBmgJaA9DCP3AVZ5AmBPAlIaUUpRoFUsyaBZHQKoZWKYRdyF1fZQoaAZoCWgPQwh5sMVun5X/v5SGlFKUaBVLMmgWR0CqGQNpdrwfdX2UKGgGaAloD0MI1sbYCS+hCcCUhpRSlGgVSzJoFkdAqhinYnOSn3V9lChoBmgJaA9DCNWuCWmNIQ/AlIaUUpRoFUsyaBZHQKoYUDFqBVd1fZQoaAZoCWgPQwjpnnWNloP6v5SGlFKUaBVLMmgWR0CqGl8S5AhTdX2UKGgGaAloD0MIC0eQSrGjBMCUhpRSlGgVSzJoFkdAqhoJm03OwHV9lChoBmgJaA9DCAK8BRIU3xDAlIaUUpRoFUsyaBZHQKoZra/RE4N1fZQoaAZoCWgPQwhzgGCOHv8CwJSGlFKUaBVLMmgWR0CqGVafzz3AdX2UKGgGaAloD0MIDMufbwv2DMCUhpRSlGgVSzJoFkdAqhtZGhEjPnV9lChoBmgJaA9DCM8wtaUO0hLAlIaUUpRoFUsyaBZHQKobA7Dl5nl1fZQoaAZoCWgPQwhKJTyh19/7v5SGlFKUaBVLMmgWR0CqGqfVAiV0dX2UKGgGaAloD0MI7uh/uRZ9FcCUhpRSlGgVSzJoFkdAqhpQg7o0RHV9lChoBmgJaA9DCMNKBRVVvxrAlIaUUpRoFUsyaBZHQKocTELH+611fZQoaAZoCWgPQwheRxyygbT6v5SGlFKUaBVLMmgWR0CqG/b7sOXmdX2UKGgGaAloD0MIoMN8eQHmEcCUhpRSlGgVSzJoFkdAqhubAaef7XV9lChoBmgJaA9DCCU+d4L9txHAlIaUUpRoFUsyaBZHQKobRAE+xGF1fZQoaAZoCWgPQwgceLXcmSkNwJSGlFKUaBVLMmgWR0CqHTzWGyoodX2UKGgGaAloD0MIHeVgNgEGDMCUhpRSlGgVSzJoFkdAqhznNzKcNHV9lChoBmgJaA9DCNaoh2h0R/e/lIaUUpRoFUsyaBZHQKoci3AEdNp1fZQoaAZoCWgPQwg89x4uOT4RwJSGlFKUaBVLMmgWR0CqHDR7Z39rdX2UKGgGaAloD0MIUDqRYKqZA8CUhpRSlGgVSzJoFkdAqh44u01IiHV9lChoBmgJaA9DCJdXrrfNhBfAlIaUUpRoFUsyaBZHQKod4zguRLd1fZQoaAZoCWgPQwj8NVmjHmIDwJSGlFKUaBVLMmgWR0CqHYeB6KLsdX2UKGgGaAloD0MIIO9VKxM+CMCUhpRSlGgVSzJoFkdAqh0wjD8+A3V9lChoBmgJaA9DCGozTkNUIQPAlIaUUpRoFUsyaBZHQKofOHIp6Qh1fZQoaAZoCWgPQwhIcCNli+T8v5SGlFKUaBVLMmgWR0CqHuMl1KXfdX2UKGgGaAloD0MI6gYKvJNvB8CUhpRSlGgVSzJoFkdAqh6HOfNA1XV9lChoBmgJaA9DCH09X7NclgzAlIaUUpRoFUsyaBZHQKoeMEgW8Ad1fZQoaAZoCWgPQwjD2EKQg/IEwJSGlFKUaBVLMmgWR0CqIC6MaS9vdX2UKGgGaAloD0MInxwFiILZFMCUhpRSlGgVSzJoFkdAqh/ZEc81XXV9lChoBmgJaA9DCGyU9ZuJiQvAlIaUUpRoFUsyaBZHQKoffVGTcIt1fZQoaAZoCWgPQwgq4J7nT1v4v5SGlFKUaBVLMmgWR0CqHyYekpI+dX2UKGgGaAloD0MIopkn1xRoDsCUhpRSlGgVSzJoFkdAqiEnsHB1tHV9lChoBmgJaA9DCJpd91Yk5g7AlIaUUpRoFUsyaBZHQKog0iJO32F1fZQoaAZoCWgPQwi7KHrgY4AWwJSGlFKUaBVLMmgWR0CqIHYcvM8pdX2UKGgGaAloD0MI7IhDNpBOD8CUhpRSlGgVSzJoFkdAqiAe3hGYr3V9lChoBmgJaA9DCJC/tKhPsgfAlIaUUpRoFUsyaBZHQKoiIAlOXVt1fZQoaAZoCWgPQwj0+L1Nf9YBwJSGlFKUaBVLMmgWR0CqIcphfBvadX2UKGgGaAloD0MIixcLQ+T0BMCUhpRSlGgVSzJoFkdAqiFuXu3MIXV9lChoBmgJaA9DCLJiuDoA4vy/lIaUUpRoFUsyaBZHQKohF1e0G/x1fZQoaAZoCWgPQwhiMH+FzNUSwJSGlFKUaBVLMmgWR0CqIw7o8p1BdX2UKGgGaAloD0MICHWRQlk4AcCUhpRSlGgVSzJoFkdAqiK5RIjGDXV9lChoBmgJaA9DCCLElbN3hgbAlIaUUpRoFUsyaBZHQKoiXVsDW9V1fZQoaAZoCWgPQwjEeqNWmB4AwJSGlFKUaBVLMmgWR0CqIgYaxX4kdX2UKGgGaAloD0MIPs40YfupA8CUhpRSlGgVSzJoFkdAqiQHMMZxaXV9lChoBmgJaA9DCIZyol2FpBPAlIaUUpRoFUsyaBZHQKojscp9ZzR1fZQoaAZoCWgPQwgRrKqX33kSwJSGlFKUaBVLMmgWR0CqI1XjlxOtdX2UKGgGaAloD0MIyqXxC68UEMCUhpRSlGgVSzJoFkdAqiL+1UlzEXV9lChoBmgJaA9DCDE/NzRlRwXAlIaUUpRoFUsyaBZHQKok+938n/l1fZQoaAZoCWgPQwhWurvOhrwIwJSGlFKUaBVLMmgWR0CqJKa7EpAldX2UKGgGaAloD0MID2JnCp2XBMCUhpRSlGgVSzJoFkdAqiRKzw+dLHV9lChoBmgJaA9DCH1AoDNp8wrAlIaUUpRoFUsyaBZHQKoj88kleGB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (772 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -4.046263332292438, "std_reward": 1.606793883898247, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-01T12:43:54.378440"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e012031c769722e0fd18e24a0c940d3be78338c9a6d51d13ed549de10e45d77
3
+ size 3056