Samzy17 commited on
Commit
4a2fa16
·
verified ·
1 Parent(s): 214e83a

Add output of finetuning tinyllama

Browse files
README.md CHANGED
@@ -1,3 +1,202 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.3.dev0
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_dropout": 0.05,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 16,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "v_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9247c42d839d73a66d34c1fad24c7a2600d7cf990f2875bdefccb5661e43282
3
+ size 18045856
checkpoint-1000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.3.dev0
checkpoint-1000/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_dropout": 0.05,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 16,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "v_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-1000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9247c42d839d73a66d34c1fad24c7a2600d7cf990f2875bdefccb5661e43282
3
+ size 18045856
checkpoint-1000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:716e9573e96ba27ba1e175f9d392616a137beab353c4d3e192f3db52a5e0c423
3
+ size 36192634
checkpoint-1000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d866f7591f0de47090bb4ee0fc77dd09e8a2996f5ef1c7cf5d2d438b112dc33b
3
+ size 14244
checkpoint-1000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b28724192dc0151a666a878c5cc75207950e93827d26b4eea975f32d1c7423a8
3
+ size 1064
checkpoint-1000/trainer_state.json ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.000998854637146,
3
+ "best_model_checkpoint": "./lora-alpaca3/checkpoint-1000",
4
+ "epoch": 2.572347266881029,
5
+ "eval_steps": 200,
6
+ "global_step": 1000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02572347266881029,
13
+ "grad_norm": 0.5646638870239258,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.9009,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05144694533762058,
20
+ "grad_norm": 0.5377612709999084,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.8355,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.07717041800643087,
27
+ "grad_norm": 0.5958595871925354,
28
+ "learning_rate": 8.999999999999999e-05,
29
+ "loss": 1.6639,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.10289389067524116,
34
+ "grad_norm": 0.5721263885498047,
35
+ "learning_rate": 0.00011999999999999999,
36
+ "loss": 1.3994,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12861736334405144,
41
+ "grad_norm": 0.2665337026119232,
42
+ "learning_rate": 0.00015,
43
+ "loss": 1.1767,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.15434083601286175,
48
+ "grad_norm": 0.12332847714424133,
49
+ "learning_rate": 0.00017999999999999998,
50
+ "loss": 1.1413,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.18006430868167203,
55
+ "grad_norm": 0.12157242000102997,
56
+ "learning_rate": 0.00020999999999999998,
57
+ "loss": 1.1103,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2057877813504823,
62
+ "grad_norm": 0.12799611687660217,
63
+ "learning_rate": 0.00023999999999999998,
64
+ "loss": 1.1003,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.2315112540192926,
69
+ "grad_norm": 0.12139850109815598,
70
+ "learning_rate": 0.00027,
71
+ "loss": 1.084,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.2572347266881029,
76
+ "grad_norm": 0.144248366355896,
77
+ "learning_rate": 0.0003,
78
+ "loss": 1.0722,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.2829581993569132,
83
+ "grad_norm": 0.15326175093650818,
84
+ "learning_rate": 0.00029718045112781953,
85
+ "loss": 1.0731,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.3086816720257235,
90
+ "grad_norm": 0.12561754882335663,
91
+ "learning_rate": 0.00029436090225563904,
92
+ "loss": 1.0537,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.33440514469453375,
97
+ "grad_norm": 0.15570670366287231,
98
+ "learning_rate": 0.0002915413533834586,
99
+ "loss": 1.049,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.36012861736334406,
104
+ "grad_norm": 0.14343878626823425,
105
+ "learning_rate": 0.00028872180451127816,
106
+ "loss": 1.0273,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.3858520900321543,
111
+ "grad_norm": 0.1315772831439972,
112
+ "learning_rate": 0.0002859022556390977,
113
+ "loss": 1.0529,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.4115755627009646,
118
+ "grad_norm": 0.13874055445194244,
119
+ "learning_rate": 0.0002830827067669173,
120
+ "loss": 1.044,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.43729903536977494,
125
+ "grad_norm": 0.1271531730890274,
126
+ "learning_rate": 0.00028026315789473683,
127
+ "loss": 1.0388,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.4630225080385852,
132
+ "grad_norm": 0.12684497237205505,
133
+ "learning_rate": 0.0002774436090225564,
134
+ "loss": 1.0385,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4887459807073955,
139
+ "grad_norm": 0.11675913631916046,
140
+ "learning_rate": 0.0002746240601503759,
141
+ "loss": 1.0349,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.5144694533762058,
146
+ "grad_norm": 0.15151233971118927,
147
+ "learning_rate": 0.00027180451127819546,
148
+ "loss": 1.0282,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5144694533762058,
153
+ "eval_loss": 1.0400722026824951,
154
+ "eval_runtime": 55.5366,
155
+ "eval_samples_per_second": 36.012,
156
+ "eval_steps_per_second": 4.502,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.5401929260450161,
161
+ "grad_norm": 0.1420961171388626,
162
+ "learning_rate": 0.000268984962406015,
163
+ "loss": 1.0297,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.5659163987138264,
168
+ "grad_norm": 0.13161741197109222,
169
+ "learning_rate": 0.0002661654135338346,
170
+ "loss": 1.0276,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.5916398713826366,
175
+ "grad_norm": 0.13450871407985687,
176
+ "learning_rate": 0.00026334586466165413,
177
+ "loss": 1.0285,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.617363344051447,
182
+ "grad_norm": 0.13193918764591217,
183
+ "learning_rate": 0.0002605263157894737,
184
+ "loss": 1.0309,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.6430868167202572,
189
+ "grad_norm": 0.1393500566482544,
190
+ "learning_rate": 0.0002577067669172932,
191
+ "loss": 1.0315,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.6688102893890675,
196
+ "grad_norm": 0.11902929842472076,
197
+ "learning_rate": 0.00025488721804511276,
198
+ "loss": 1.0347,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 0.6945337620578779,
203
+ "grad_norm": 0.1258976310491562,
204
+ "learning_rate": 0.0002520676691729323,
205
+ "loss": 1.0273,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 0.7202572347266881,
210
+ "grad_norm": 0.12598267197608948,
211
+ "learning_rate": 0.0002492481203007519,
212
+ "loss": 1.0128,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 0.7459807073954984,
217
+ "grad_norm": 0.122463159263134,
218
+ "learning_rate": 0.0002464285714285714,
219
+ "loss": 1.0251,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 0.7717041800643086,
224
+ "grad_norm": 0.1293506771326065,
225
+ "learning_rate": 0.00024360902255639094,
226
+ "loss": 1.0317,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 0.797427652733119,
231
+ "grad_norm": 0.13788191974163055,
232
+ "learning_rate": 0.00024078947368421052,
233
+ "loss": 1.029,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 0.8231511254019293,
238
+ "grad_norm": 0.1445332169532776,
239
+ "learning_rate": 0.00023796992481203005,
240
+ "loss": 1.0173,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 0.8488745980707395,
245
+ "grad_norm": 0.11408714205026627,
246
+ "learning_rate": 0.00023515037593984961,
247
+ "loss": 1.0109,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 0.8745980707395499,
252
+ "grad_norm": 0.11767855286598206,
253
+ "learning_rate": 0.00023233082706766915,
254
+ "loss": 1.0116,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 0.9003215434083601,
259
+ "grad_norm": 0.12555481493473053,
260
+ "learning_rate": 0.0002295112781954887,
261
+ "loss": 1.0144,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 0.9260450160771704,
266
+ "grad_norm": 0.12403016537427902,
267
+ "learning_rate": 0.00022669172932330824,
268
+ "loss": 1.0299,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 0.9517684887459807,
273
+ "grad_norm": 0.12968535721302032,
274
+ "learning_rate": 0.0002238721804511278,
275
+ "loss": 1.0081,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 0.977491961414791,
280
+ "grad_norm": 0.12369370460510254,
281
+ "learning_rate": 0.00022105263157894733,
282
+ "loss": 1.0065,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.0032154340836013,
287
+ "grad_norm": 0.12212081998586655,
288
+ "learning_rate": 0.0002182330827067669,
289
+ "loss": 1.0448,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.0289389067524115,
294
+ "grad_norm": 0.1301109939813614,
295
+ "learning_rate": 0.00021541353383458647,
296
+ "loss": 1.0052,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.0289389067524115,
301
+ "eval_loss": 1.0189071893692017,
302
+ "eval_runtime": 55.4593,
303
+ "eval_samples_per_second": 36.062,
304
+ "eval_steps_per_second": 4.508,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.0546623794212218,
309
+ "grad_norm": 0.13505908846855164,
310
+ "learning_rate": 0.000212593984962406,
311
+ "loss": 1.0009,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.0803858520900322,
316
+ "grad_norm": 0.12307268381118774,
317
+ "learning_rate": 0.00020977443609022556,
318
+ "loss": 1.0039,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.1061093247588425,
323
+ "grad_norm": 0.11501840502023697,
324
+ "learning_rate": 0.0002069548872180451,
325
+ "loss": 0.9988,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.1318327974276527,
330
+ "grad_norm": 0.12922251224517822,
331
+ "learning_rate": 0.00020413533834586463,
332
+ "loss": 0.9938,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.157556270096463,
337
+ "grad_norm": 0.12304320186376572,
338
+ "learning_rate": 0.0002013157894736842,
339
+ "loss": 1.0223,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.1832797427652733,
344
+ "grad_norm": 0.11323860287666321,
345
+ "learning_rate": 0.00019849624060150372,
346
+ "loss": 0.9957,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 1.2090032154340835,
351
+ "grad_norm": 0.1335834562778473,
352
+ "learning_rate": 0.00019567669172932328,
353
+ "loss": 1.0042,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 1.234726688102894,
358
+ "grad_norm": 0.12371603399515152,
359
+ "learning_rate": 0.00019285714285714286,
360
+ "loss": 1.0056,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 1.2604501607717042,
365
+ "grad_norm": 0.12318002432584763,
366
+ "learning_rate": 0.0001900375939849624,
367
+ "loss": 1.0122,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 1.2861736334405145,
372
+ "grad_norm": 0.13187570869922638,
373
+ "learning_rate": 0.00018721804511278195,
374
+ "loss": 0.9971,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 1.3118971061093248,
379
+ "grad_norm": 0.11861589550971985,
380
+ "learning_rate": 0.00018439849624060149,
381
+ "loss": 0.9926,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 1.337620578778135,
386
+ "grad_norm": 0.11287492513656616,
387
+ "learning_rate": 0.00018157894736842105,
388
+ "loss": 1.016,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 1.3633440514469453,
393
+ "grad_norm": 0.1384376585483551,
394
+ "learning_rate": 0.00017875939849624058,
395
+ "loss": 1.0059,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 1.3890675241157555,
400
+ "grad_norm": 0.12147587537765503,
401
+ "learning_rate": 0.00017593984962406014,
402
+ "loss": 1.0213,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 1.414790996784566,
407
+ "grad_norm": 0.13031207025051117,
408
+ "learning_rate": 0.00017312030075187967,
409
+ "loss": 1.005,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 1.4405144694533762,
414
+ "grad_norm": 0.13779744505882263,
415
+ "learning_rate": 0.00017030075187969925,
416
+ "loss": 1.0077,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 1.4662379421221865,
421
+ "grad_norm": 0.13196057081222534,
422
+ "learning_rate": 0.00016748120300751879,
423
+ "loss": 0.9944,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 1.4919614147909968,
428
+ "grad_norm": 0.117030069231987,
429
+ "learning_rate": 0.00016466165413533835,
430
+ "loss": 1.0082,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 1.517684887459807,
435
+ "grad_norm": 0.1274162381887436,
436
+ "learning_rate": 0.00016184210526315788,
437
+ "loss": 1.0102,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 1.5434083601286175,
442
+ "grad_norm": 0.13315673172473907,
443
+ "learning_rate": 0.00015902255639097744,
444
+ "loss": 0.985,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 1.5434083601286175,
449
+ "eval_loss": 1.0096462965011597,
450
+ "eval_runtime": 55.507,
451
+ "eval_samples_per_second": 36.031,
452
+ "eval_steps_per_second": 4.504,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 1.5691318327974275,
457
+ "grad_norm": 0.12220187485218048,
458
+ "learning_rate": 0.00015620300751879697,
459
+ "loss": 0.9912,
460
+ "step": 610
461
+ },
462
+ {
463
+ "epoch": 1.594855305466238,
464
+ "grad_norm": 0.12432006746530533,
465
+ "learning_rate": 0.00015338345864661653,
466
+ "loss": 0.9963,
467
+ "step": 620
468
+ },
469
+ {
470
+ "epoch": 1.6205787781350482,
471
+ "grad_norm": 0.12138667702674866,
472
+ "learning_rate": 0.00015056390977443606,
473
+ "loss": 1.0014,
474
+ "step": 630
475
+ },
476
+ {
477
+ "epoch": 1.6463022508038585,
478
+ "grad_norm": 0.13801203668117523,
479
+ "learning_rate": 0.00014774436090225562,
480
+ "loss": 0.9922,
481
+ "step": 640
482
+ },
483
+ {
484
+ "epoch": 1.6720257234726688,
485
+ "grad_norm": 0.13330678641796112,
486
+ "learning_rate": 0.00014492481203007518,
487
+ "loss": 0.9897,
488
+ "step": 650
489
+ },
490
+ {
491
+ "epoch": 1.697749196141479,
492
+ "grad_norm": 0.12127404659986496,
493
+ "learning_rate": 0.0001421052631578947,
494
+ "loss": 0.9898,
495
+ "step": 660
496
+ },
497
+ {
498
+ "epoch": 1.7234726688102895,
499
+ "grad_norm": 0.13159097731113434,
500
+ "learning_rate": 0.00013928571428571427,
501
+ "loss": 0.9943,
502
+ "step": 670
503
+ },
504
+ {
505
+ "epoch": 1.7491961414790995,
506
+ "grad_norm": 0.13246209919452667,
507
+ "learning_rate": 0.00013646616541353383,
508
+ "loss": 1.0048,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 1.77491961414791,
513
+ "grad_norm": 0.11693169921636581,
514
+ "learning_rate": 0.00013364661654135336,
515
+ "loss": 0.9996,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 1.8006430868167203,
520
+ "grad_norm": 0.13176512718200684,
521
+ "learning_rate": 0.00013082706766917292,
522
+ "loss": 0.9923,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 1.8263665594855305,
527
+ "grad_norm": 0.1224486380815506,
528
+ "learning_rate": 0.00012800751879699248,
529
+ "loss": 0.9799,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 1.852090032154341,
534
+ "grad_norm": 0.12146233022212982,
535
+ "learning_rate": 0.000125187969924812,
536
+ "loss": 0.9874,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 1.877813504823151,
541
+ "grad_norm": 0.12821047008037567,
542
+ "learning_rate": 0.00012236842105263157,
543
+ "loss": 0.9982,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 1.9035369774919615,
548
+ "grad_norm": 0.12273906171321869,
549
+ "learning_rate": 0.00011954887218045111,
550
+ "loss": 0.9946,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 1.9292604501607717,
555
+ "grad_norm": 0.1282244175672531,
556
+ "learning_rate": 0.00011672932330827067,
557
+ "loss": 0.9976,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 1.954983922829582,
562
+ "grad_norm": 0.13315148651599884,
563
+ "learning_rate": 0.00011390977443609022,
564
+ "loss": 1.0012,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 1.9807073954983923,
569
+ "grad_norm": 0.12510079145431519,
570
+ "learning_rate": 0.00011109022556390976,
571
+ "loss": 0.9865,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 2.0064308681672025,
576
+ "grad_norm": 0.11581259220838547,
577
+ "learning_rate": 0.00010827067669172931,
578
+ "loss": 1.0306,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 2.032154340836013,
583
+ "grad_norm": 0.1278076171875,
584
+ "learning_rate": 0.00010545112781954887,
585
+ "loss": 0.9984,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 2.057877813504823,
590
+ "grad_norm": 0.12879391014575958,
591
+ "learning_rate": 0.00010263157894736841,
592
+ "loss": 0.9729,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 2.057877813504823,
597
+ "eval_loss": 1.0042115449905396,
598
+ "eval_runtime": 55.4463,
599
+ "eval_samples_per_second": 36.071,
600
+ "eval_steps_per_second": 4.509,
601
+ "step": 800
602
+ },
603
+ {
604
+ "epoch": 2.0836012861736335,
605
+ "grad_norm": 0.1267639547586441,
606
+ "learning_rate": 9.981203007518796e-05,
607
+ "loss": 0.9899,
608
+ "step": 810
609
+ },
610
+ {
611
+ "epoch": 2.1093247588424435,
612
+ "grad_norm": 0.13013407588005066,
613
+ "learning_rate": 9.69924812030075e-05,
614
+ "loss": 0.9913,
615
+ "step": 820
616
+ },
617
+ {
618
+ "epoch": 2.135048231511254,
619
+ "grad_norm": 0.12404422461986542,
620
+ "learning_rate": 9.417293233082706e-05,
621
+ "loss": 0.9923,
622
+ "step": 830
623
+ },
624
+ {
625
+ "epoch": 2.1607717041800645,
626
+ "grad_norm": 0.12091611325740814,
627
+ "learning_rate": 9.135338345864661e-05,
628
+ "loss": 0.9905,
629
+ "step": 840
630
+ },
631
+ {
632
+ "epoch": 2.1864951768488745,
633
+ "grad_norm": 0.13067036867141724,
634
+ "learning_rate": 8.853383458646615e-05,
635
+ "loss": 0.9944,
636
+ "step": 850
637
+ },
638
+ {
639
+ "epoch": 2.212218649517685,
640
+ "grad_norm": 0.13169625401496887,
641
+ "learning_rate": 8.57142857142857e-05,
642
+ "loss": 0.9848,
643
+ "step": 860
644
+ },
645
+ {
646
+ "epoch": 2.237942122186495,
647
+ "grad_norm": 0.13107703626155853,
648
+ "learning_rate": 8.289473684210526e-05,
649
+ "loss": 0.9712,
650
+ "step": 870
651
+ },
652
+ {
653
+ "epoch": 2.2636655948553055,
654
+ "grad_norm": 0.1307050734758377,
655
+ "learning_rate": 8.00751879699248e-05,
656
+ "loss": 0.9855,
657
+ "step": 880
658
+ },
659
+ {
660
+ "epoch": 2.289389067524116,
661
+ "grad_norm": 0.13297782838344574,
662
+ "learning_rate": 7.725563909774435e-05,
663
+ "loss": 0.9918,
664
+ "step": 890
665
+ },
666
+ {
667
+ "epoch": 2.315112540192926,
668
+ "grad_norm": 0.1355738788843155,
669
+ "learning_rate": 7.44360902255639e-05,
670
+ "loss": 0.9845,
671
+ "step": 900
672
+ },
673
+ {
674
+ "epoch": 2.3408360128617365,
675
+ "grad_norm": 0.12372130155563354,
676
+ "learning_rate": 7.161654135338345e-05,
677
+ "loss": 0.9887,
678
+ "step": 910
679
+ },
680
+ {
681
+ "epoch": 2.3665594855305465,
682
+ "grad_norm": 0.1307709813117981,
683
+ "learning_rate": 6.8796992481203e-05,
684
+ "loss": 0.9886,
685
+ "step": 920
686
+ },
687
+ {
688
+ "epoch": 2.392282958199357,
689
+ "grad_norm": 0.12701715528964996,
690
+ "learning_rate": 6.597744360902256e-05,
691
+ "loss": 0.9885,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 2.418006430868167,
696
+ "grad_norm": 0.13114945590496063,
697
+ "learning_rate": 6.315789473684209e-05,
698
+ "loss": 0.9788,
699
+ "step": 940
700
+ },
701
+ {
702
+ "epoch": 2.4437299035369775,
703
+ "grad_norm": 0.12744566798210144,
704
+ "learning_rate": 6.033834586466165e-05,
705
+ "loss": 0.986,
706
+ "step": 950
707
+ },
708
+ {
709
+ "epoch": 2.469453376205788,
710
+ "grad_norm": 0.13428843021392822,
711
+ "learning_rate": 5.7518796992481194e-05,
712
+ "loss": 0.974,
713
+ "step": 960
714
+ },
715
+ {
716
+ "epoch": 2.495176848874598,
717
+ "grad_norm": 0.13112470507621765,
718
+ "learning_rate": 5.4699248120300746e-05,
719
+ "loss": 0.9818,
720
+ "step": 970
721
+ },
722
+ {
723
+ "epoch": 2.5209003215434085,
724
+ "grad_norm": 0.1363256722688675,
725
+ "learning_rate": 5.187969924812029e-05,
726
+ "loss": 0.9909,
727
+ "step": 980
728
+ },
729
+ {
730
+ "epoch": 2.5466237942122185,
731
+ "grad_norm": 0.13036535680294037,
732
+ "learning_rate": 4.9060150375939844e-05,
733
+ "loss": 0.9921,
734
+ "step": 990
735
+ },
736
+ {
737
+ "epoch": 2.572347266881029,
738
+ "grad_norm": 0.13345099985599518,
739
+ "learning_rate": 4.624060150375939e-05,
740
+ "loss": 0.9722,
741
+ "step": 1000
742
+ },
743
+ {
744
+ "epoch": 2.572347266881029,
745
+ "eval_loss": 1.000998854637146,
746
+ "eval_runtime": 55.4742,
747
+ "eval_samples_per_second": 36.053,
748
+ "eval_steps_per_second": 4.507,
749
+ "step": 1000
750
+ }
751
+ ],
752
+ "logging_steps": 10,
753
+ "max_steps": 1164,
754
+ "num_input_tokens_seen": 0,
755
+ "num_train_epochs": 3,
756
+ "save_steps": 200,
757
+ "stateful_callbacks": {
758
+ "TrainerControl": {
759
+ "args": {
760
+ "should_epoch_stop": false,
761
+ "should_evaluate": false,
762
+ "should_log": false,
763
+ "should_save": true,
764
+ "should_training_stop": false
765
+ },
766
+ "attributes": {}
767
+ }
768
+ },
769
+ "total_flos": 1.9627225935210086e+17,
770
+ "train_batch_size": 4,
771
+ "trial_name": null,
772
+ "trial_params": null
773
+ }
checkpoint-1000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5844d0b7bf295f3ab4a8da73232006a40fc200ad74a77a9010df10478b55d69
3
+ size 5240
checkpoint-1164/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.3.dev0
checkpoint-1164/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_dropout": 0.05,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 16,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "v_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-1164/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe60d478997ece7e2f508c86547220fe6b03ae18b640709e734bce17d86ef70c
3
+ size 18045856
checkpoint-1164/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1855ab79f9312ed4e6118fc3b4ac3beaaf58e70db04c2f045e8bef925d531f21
3
+ size 36192634
checkpoint-1164/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcda84240efbcf27c79bbf45ec98a765f6241cf84b0797d7abb184cb87f1c7e0
3
+ size 14244
checkpoint-1164/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7442cc933032398e389dcf12b89ea90828d96dfea765640c1295a21b2451070e
3
+ size 1064
checkpoint-1164/trainer_state.json ADDED
@@ -0,0 +1,885 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.000998854637146,
3
+ "best_model_checkpoint": "./lora-alpaca3/checkpoint-1000",
4
+ "epoch": 2.9942122186495177,
5
+ "eval_steps": 200,
6
+ "global_step": 1164,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02572347266881029,
13
+ "grad_norm": 0.5646638870239258,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.9009,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05144694533762058,
20
+ "grad_norm": 0.5377612709999084,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.8355,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.07717041800643087,
27
+ "grad_norm": 0.5958595871925354,
28
+ "learning_rate": 8.999999999999999e-05,
29
+ "loss": 1.6639,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.10289389067524116,
34
+ "grad_norm": 0.5721263885498047,
35
+ "learning_rate": 0.00011999999999999999,
36
+ "loss": 1.3994,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12861736334405144,
41
+ "grad_norm": 0.2665337026119232,
42
+ "learning_rate": 0.00015,
43
+ "loss": 1.1767,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.15434083601286175,
48
+ "grad_norm": 0.12332847714424133,
49
+ "learning_rate": 0.00017999999999999998,
50
+ "loss": 1.1413,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.18006430868167203,
55
+ "grad_norm": 0.12157242000102997,
56
+ "learning_rate": 0.00020999999999999998,
57
+ "loss": 1.1103,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2057877813504823,
62
+ "grad_norm": 0.12799611687660217,
63
+ "learning_rate": 0.00023999999999999998,
64
+ "loss": 1.1003,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.2315112540192926,
69
+ "grad_norm": 0.12139850109815598,
70
+ "learning_rate": 0.00027,
71
+ "loss": 1.084,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.2572347266881029,
76
+ "grad_norm": 0.144248366355896,
77
+ "learning_rate": 0.0003,
78
+ "loss": 1.0722,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.2829581993569132,
83
+ "grad_norm": 0.15326175093650818,
84
+ "learning_rate": 0.00029718045112781953,
85
+ "loss": 1.0731,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.3086816720257235,
90
+ "grad_norm": 0.12561754882335663,
91
+ "learning_rate": 0.00029436090225563904,
92
+ "loss": 1.0537,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.33440514469453375,
97
+ "grad_norm": 0.15570670366287231,
98
+ "learning_rate": 0.0002915413533834586,
99
+ "loss": 1.049,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.36012861736334406,
104
+ "grad_norm": 0.14343878626823425,
105
+ "learning_rate": 0.00028872180451127816,
106
+ "loss": 1.0273,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.3858520900321543,
111
+ "grad_norm": 0.1315772831439972,
112
+ "learning_rate": 0.0002859022556390977,
113
+ "loss": 1.0529,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.4115755627009646,
118
+ "grad_norm": 0.13874055445194244,
119
+ "learning_rate": 0.0002830827067669173,
120
+ "loss": 1.044,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.43729903536977494,
125
+ "grad_norm": 0.1271531730890274,
126
+ "learning_rate": 0.00028026315789473683,
127
+ "loss": 1.0388,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.4630225080385852,
132
+ "grad_norm": 0.12684497237205505,
133
+ "learning_rate": 0.0002774436090225564,
134
+ "loss": 1.0385,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4887459807073955,
139
+ "grad_norm": 0.11675913631916046,
140
+ "learning_rate": 0.0002746240601503759,
141
+ "loss": 1.0349,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.5144694533762058,
146
+ "grad_norm": 0.15151233971118927,
147
+ "learning_rate": 0.00027180451127819546,
148
+ "loss": 1.0282,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5144694533762058,
153
+ "eval_loss": 1.0400722026824951,
154
+ "eval_runtime": 55.5366,
155
+ "eval_samples_per_second": 36.012,
156
+ "eval_steps_per_second": 4.502,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.5401929260450161,
161
+ "grad_norm": 0.1420961171388626,
162
+ "learning_rate": 0.000268984962406015,
163
+ "loss": 1.0297,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.5659163987138264,
168
+ "grad_norm": 0.13161741197109222,
169
+ "learning_rate": 0.0002661654135338346,
170
+ "loss": 1.0276,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.5916398713826366,
175
+ "grad_norm": 0.13450871407985687,
176
+ "learning_rate": 0.00026334586466165413,
177
+ "loss": 1.0285,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.617363344051447,
182
+ "grad_norm": 0.13193918764591217,
183
+ "learning_rate": 0.0002605263157894737,
184
+ "loss": 1.0309,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.6430868167202572,
189
+ "grad_norm": 0.1393500566482544,
190
+ "learning_rate": 0.0002577067669172932,
191
+ "loss": 1.0315,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.6688102893890675,
196
+ "grad_norm": 0.11902929842472076,
197
+ "learning_rate": 0.00025488721804511276,
198
+ "loss": 1.0347,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 0.6945337620578779,
203
+ "grad_norm": 0.1258976310491562,
204
+ "learning_rate": 0.0002520676691729323,
205
+ "loss": 1.0273,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 0.7202572347266881,
210
+ "grad_norm": 0.12598267197608948,
211
+ "learning_rate": 0.0002492481203007519,
212
+ "loss": 1.0128,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 0.7459807073954984,
217
+ "grad_norm": 0.122463159263134,
218
+ "learning_rate": 0.0002464285714285714,
219
+ "loss": 1.0251,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 0.7717041800643086,
224
+ "grad_norm": 0.1293506771326065,
225
+ "learning_rate": 0.00024360902255639094,
226
+ "loss": 1.0317,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 0.797427652733119,
231
+ "grad_norm": 0.13788191974163055,
232
+ "learning_rate": 0.00024078947368421052,
233
+ "loss": 1.029,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 0.8231511254019293,
238
+ "grad_norm": 0.1445332169532776,
239
+ "learning_rate": 0.00023796992481203005,
240
+ "loss": 1.0173,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 0.8488745980707395,
245
+ "grad_norm": 0.11408714205026627,
246
+ "learning_rate": 0.00023515037593984961,
247
+ "loss": 1.0109,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 0.8745980707395499,
252
+ "grad_norm": 0.11767855286598206,
253
+ "learning_rate": 0.00023233082706766915,
254
+ "loss": 1.0116,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 0.9003215434083601,
259
+ "grad_norm": 0.12555481493473053,
260
+ "learning_rate": 0.0002295112781954887,
261
+ "loss": 1.0144,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 0.9260450160771704,
266
+ "grad_norm": 0.12403016537427902,
267
+ "learning_rate": 0.00022669172932330824,
268
+ "loss": 1.0299,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 0.9517684887459807,
273
+ "grad_norm": 0.12968535721302032,
274
+ "learning_rate": 0.0002238721804511278,
275
+ "loss": 1.0081,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 0.977491961414791,
280
+ "grad_norm": 0.12369370460510254,
281
+ "learning_rate": 0.00022105263157894733,
282
+ "loss": 1.0065,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.0032154340836013,
287
+ "grad_norm": 0.12212081998586655,
288
+ "learning_rate": 0.0002182330827067669,
289
+ "loss": 1.0448,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.0289389067524115,
294
+ "grad_norm": 0.1301109939813614,
295
+ "learning_rate": 0.00021541353383458647,
296
+ "loss": 1.0052,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.0289389067524115,
301
+ "eval_loss": 1.0189071893692017,
302
+ "eval_runtime": 55.4593,
303
+ "eval_samples_per_second": 36.062,
304
+ "eval_steps_per_second": 4.508,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.0546623794212218,
309
+ "grad_norm": 0.13505908846855164,
310
+ "learning_rate": 0.000212593984962406,
311
+ "loss": 1.0009,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.0803858520900322,
316
+ "grad_norm": 0.12307268381118774,
317
+ "learning_rate": 0.00020977443609022556,
318
+ "loss": 1.0039,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.1061093247588425,
323
+ "grad_norm": 0.11501840502023697,
324
+ "learning_rate": 0.0002069548872180451,
325
+ "loss": 0.9988,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.1318327974276527,
330
+ "grad_norm": 0.12922251224517822,
331
+ "learning_rate": 0.00020413533834586463,
332
+ "loss": 0.9938,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.157556270096463,
337
+ "grad_norm": 0.12304320186376572,
338
+ "learning_rate": 0.0002013157894736842,
339
+ "loss": 1.0223,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.1832797427652733,
344
+ "grad_norm": 0.11323860287666321,
345
+ "learning_rate": 0.00019849624060150372,
346
+ "loss": 0.9957,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 1.2090032154340835,
351
+ "grad_norm": 0.1335834562778473,
352
+ "learning_rate": 0.00019567669172932328,
353
+ "loss": 1.0042,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 1.234726688102894,
358
+ "grad_norm": 0.12371603399515152,
359
+ "learning_rate": 0.00019285714285714286,
360
+ "loss": 1.0056,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 1.2604501607717042,
365
+ "grad_norm": 0.12318002432584763,
366
+ "learning_rate": 0.0001900375939849624,
367
+ "loss": 1.0122,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 1.2861736334405145,
372
+ "grad_norm": 0.13187570869922638,
373
+ "learning_rate": 0.00018721804511278195,
374
+ "loss": 0.9971,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 1.3118971061093248,
379
+ "grad_norm": 0.11861589550971985,
380
+ "learning_rate": 0.00018439849624060149,
381
+ "loss": 0.9926,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 1.337620578778135,
386
+ "grad_norm": 0.11287492513656616,
387
+ "learning_rate": 0.00018157894736842105,
388
+ "loss": 1.016,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 1.3633440514469453,
393
+ "grad_norm": 0.1384376585483551,
394
+ "learning_rate": 0.00017875939849624058,
395
+ "loss": 1.0059,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 1.3890675241157555,
400
+ "grad_norm": 0.12147587537765503,
401
+ "learning_rate": 0.00017593984962406014,
402
+ "loss": 1.0213,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 1.414790996784566,
407
+ "grad_norm": 0.13031207025051117,
408
+ "learning_rate": 0.00017312030075187967,
409
+ "loss": 1.005,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 1.4405144694533762,
414
+ "grad_norm": 0.13779744505882263,
415
+ "learning_rate": 0.00017030075187969925,
416
+ "loss": 1.0077,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 1.4662379421221865,
421
+ "grad_norm": 0.13196057081222534,
422
+ "learning_rate": 0.00016748120300751879,
423
+ "loss": 0.9944,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 1.4919614147909968,
428
+ "grad_norm": 0.117030069231987,
429
+ "learning_rate": 0.00016466165413533835,
430
+ "loss": 1.0082,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 1.517684887459807,
435
+ "grad_norm": 0.1274162381887436,
436
+ "learning_rate": 0.00016184210526315788,
437
+ "loss": 1.0102,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 1.5434083601286175,
442
+ "grad_norm": 0.13315673172473907,
443
+ "learning_rate": 0.00015902255639097744,
444
+ "loss": 0.985,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 1.5434083601286175,
449
+ "eval_loss": 1.0096462965011597,
450
+ "eval_runtime": 55.507,
451
+ "eval_samples_per_second": 36.031,
452
+ "eval_steps_per_second": 4.504,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 1.5691318327974275,
457
+ "grad_norm": 0.12220187485218048,
458
+ "learning_rate": 0.00015620300751879697,
459
+ "loss": 0.9912,
460
+ "step": 610
461
+ },
462
+ {
463
+ "epoch": 1.594855305466238,
464
+ "grad_norm": 0.12432006746530533,
465
+ "learning_rate": 0.00015338345864661653,
466
+ "loss": 0.9963,
467
+ "step": 620
468
+ },
469
+ {
470
+ "epoch": 1.6205787781350482,
471
+ "grad_norm": 0.12138667702674866,
472
+ "learning_rate": 0.00015056390977443606,
473
+ "loss": 1.0014,
474
+ "step": 630
475
+ },
476
+ {
477
+ "epoch": 1.6463022508038585,
478
+ "grad_norm": 0.13801203668117523,
479
+ "learning_rate": 0.00014774436090225562,
480
+ "loss": 0.9922,
481
+ "step": 640
482
+ },
483
+ {
484
+ "epoch": 1.6720257234726688,
485
+ "grad_norm": 0.13330678641796112,
486
+ "learning_rate": 0.00014492481203007518,
487
+ "loss": 0.9897,
488
+ "step": 650
489
+ },
490
+ {
491
+ "epoch": 1.697749196141479,
492
+ "grad_norm": 0.12127404659986496,
493
+ "learning_rate": 0.0001421052631578947,
494
+ "loss": 0.9898,
495
+ "step": 660
496
+ },
497
+ {
498
+ "epoch": 1.7234726688102895,
499
+ "grad_norm": 0.13159097731113434,
500
+ "learning_rate": 0.00013928571428571427,
501
+ "loss": 0.9943,
502
+ "step": 670
503
+ },
504
+ {
505
+ "epoch": 1.7491961414790995,
506
+ "grad_norm": 0.13246209919452667,
507
+ "learning_rate": 0.00013646616541353383,
508
+ "loss": 1.0048,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 1.77491961414791,
513
+ "grad_norm": 0.11693169921636581,
514
+ "learning_rate": 0.00013364661654135336,
515
+ "loss": 0.9996,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 1.8006430868167203,
520
+ "grad_norm": 0.13176512718200684,
521
+ "learning_rate": 0.00013082706766917292,
522
+ "loss": 0.9923,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 1.8263665594855305,
527
+ "grad_norm": 0.1224486380815506,
528
+ "learning_rate": 0.00012800751879699248,
529
+ "loss": 0.9799,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 1.852090032154341,
534
+ "grad_norm": 0.12146233022212982,
535
+ "learning_rate": 0.000125187969924812,
536
+ "loss": 0.9874,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 1.877813504823151,
541
+ "grad_norm": 0.12821047008037567,
542
+ "learning_rate": 0.00012236842105263157,
543
+ "loss": 0.9982,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 1.9035369774919615,
548
+ "grad_norm": 0.12273906171321869,
549
+ "learning_rate": 0.00011954887218045111,
550
+ "loss": 0.9946,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 1.9292604501607717,
555
+ "grad_norm": 0.1282244175672531,
556
+ "learning_rate": 0.00011672932330827067,
557
+ "loss": 0.9976,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 1.954983922829582,
562
+ "grad_norm": 0.13315148651599884,
563
+ "learning_rate": 0.00011390977443609022,
564
+ "loss": 1.0012,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 1.9807073954983923,
569
+ "grad_norm": 0.12510079145431519,
570
+ "learning_rate": 0.00011109022556390976,
571
+ "loss": 0.9865,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 2.0064308681672025,
576
+ "grad_norm": 0.11581259220838547,
577
+ "learning_rate": 0.00010827067669172931,
578
+ "loss": 1.0306,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 2.032154340836013,
583
+ "grad_norm": 0.1278076171875,
584
+ "learning_rate": 0.00010545112781954887,
585
+ "loss": 0.9984,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 2.057877813504823,
590
+ "grad_norm": 0.12879391014575958,
591
+ "learning_rate": 0.00010263157894736841,
592
+ "loss": 0.9729,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 2.057877813504823,
597
+ "eval_loss": 1.0042115449905396,
598
+ "eval_runtime": 55.4463,
599
+ "eval_samples_per_second": 36.071,
600
+ "eval_steps_per_second": 4.509,
601
+ "step": 800
602
+ },
603
+ {
604
+ "epoch": 2.0836012861736335,
605
+ "grad_norm": 0.1267639547586441,
606
+ "learning_rate": 9.981203007518796e-05,
607
+ "loss": 0.9899,
608
+ "step": 810
609
+ },
610
+ {
611
+ "epoch": 2.1093247588424435,
612
+ "grad_norm": 0.13013407588005066,
613
+ "learning_rate": 9.69924812030075e-05,
614
+ "loss": 0.9913,
615
+ "step": 820
616
+ },
617
+ {
618
+ "epoch": 2.135048231511254,
619
+ "grad_norm": 0.12404422461986542,
620
+ "learning_rate": 9.417293233082706e-05,
621
+ "loss": 0.9923,
622
+ "step": 830
623
+ },
624
+ {
625
+ "epoch": 2.1607717041800645,
626
+ "grad_norm": 0.12091611325740814,
627
+ "learning_rate": 9.135338345864661e-05,
628
+ "loss": 0.9905,
629
+ "step": 840
630
+ },
631
+ {
632
+ "epoch": 2.1864951768488745,
633
+ "grad_norm": 0.13067036867141724,
634
+ "learning_rate": 8.853383458646615e-05,
635
+ "loss": 0.9944,
636
+ "step": 850
637
+ },
638
+ {
639
+ "epoch": 2.212218649517685,
640
+ "grad_norm": 0.13169625401496887,
641
+ "learning_rate": 8.57142857142857e-05,
642
+ "loss": 0.9848,
643
+ "step": 860
644
+ },
645
+ {
646
+ "epoch": 2.237942122186495,
647
+ "grad_norm": 0.13107703626155853,
648
+ "learning_rate": 8.289473684210526e-05,
649
+ "loss": 0.9712,
650
+ "step": 870
651
+ },
652
+ {
653
+ "epoch": 2.2636655948553055,
654
+ "grad_norm": 0.1307050734758377,
655
+ "learning_rate": 8.00751879699248e-05,
656
+ "loss": 0.9855,
657
+ "step": 880
658
+ },
659
+ {
660
+ "epoch": 2.289389067524116,
661
+ "grad_norm": 0.13297782838344574,
662
+ "learning_rate": 7.725563909774435e-05,
663
+ "loss": 0.9918,
664
+ "step": 890
665
+ },
666
+ {
667
+ "epoch": 2.315112540192926,
668
+ "grad_norm": 0.1355738788843155,
669
+ "learning_rate": 7.44360902255639e-05,
670
+ "loss": 0.9845,
671
+ "step": 900
672
+ },
673
+ {
674
+ "epoch": 2.3408360128617365,
675
+ "grad_norm": 0.12372130155563354,
676
+ "learning_rate": 7.161654135338345e-05,
677
+ "loss": 0.9887,
678
+ "step": 910
679
+ },
680
+ {
681
+ "epoch": 2.3665594855305465,
682
+ "grad_norm": 0.1307709813117981,
683
+ "learning_rate": 6.8796992481203e-05,
684
+ "loss": 0.9886,
685
+ "step": 920
686
+ },
687
+ {
688
+ "epoch": 2.392282958199357,
689
+ "grad_norm": 0.12701715528964996,
690
+ "learning_rate": 6.597744360902256e-05,
691
+ "loss": 0.9885,
692
+ "step": 930
693
+ },
694
+ {
695
+ "epoch": 2.418006430868167,
696
+ "grad_norm": 0.13114945590496063,
697
+ "learning_rate": 6.315789473684209e-05,
698
+ "loss": 0.9788,
699
+ "step": 940
700
+ },
701
+ {
702
+ "epoch": 2.4437299035369775,
703
+ "grad_norm": 0.12744566798210144,
704
+ "learning_rate": 6.033834586466165e-05,
705
+ "loss": 0.986,
706
+ "step": 950
707
+ },
708
+ {
709
+ "epoch": 2.469453376205788,
710
+ "grad_norm": 0.13428843021392822,
711
+ "learning_rate": 5.7518796992481194e-05,
712
+ "loss": 0.974,
713
+ "step": 960
714
+ },
715
+ {
716
+ "epoch": 2.495176848874598,
717
+ "grad_norm": 0.13112470507621765,
718
+ "learning_rate": 5.4699248120300746e-05,
719
+ "loss": 0.9818,
720
+ "step": 970
721
+ },
722
+ {
723
+ "epoch": 2.5209003215434085,
724
+ "grad_norm": 0.1363256722688675,
725
+ "learning_rate": 5.187969924812029e-05,
726
+ "loss": 0.9909,
727
+ "step": 980
728
+ },
729
+ {
730
+ "epoch": 2.5466237942122185,
731
+ "grad_norm": 0.13036535680294037,
732
+ "learning_rate": 4.9060150375939844e-05,
733
+ "loss": 0.9921,
734
+ "step": 990
735
+ },
736
+ {
737
+ "epoch": 2.572347266881029,
738
+ "grad_norm": 0.13345099985599518,
739
+ "learning_rate": 4.624060150375939e-05,
740
+ "loss": 0.9722,
741
+ "step": 1000
742
+ },
743
+ {
744
+ "epoch": 2.572347266881029,
745
+ "eval_loss": 1.000998854637146,
746
+ "eval_runtime": 55.4742,
747
+ "eval_samples_per_second": 36.053,
748
+ "eval_steps_per_second": 4.507,
749
+ "step": 1000
750
+ },
751
+ {
752
+ "epoch": 2.598070739549839,
753
+ "grad_norm": 0.12475313246250153,
754
+ "learning_rate": 4.342105263157895e-05,
755
+ "loss": 0.973,
756
+ "step": 1010
757
+ },
758
+ {
759
+ "epoch": 2.6237942122186495,
760
+ "grad_norm": 0.13274677097797394,
761
+ "learning_rate": 4.060150375939849e-05,
762
+ "loss": 0.9904,
763
+ "step": 1020
764
+ },
765
+ {
766
+ "epoch": 2.64951768488746,
767
+ "grad_norm": 0.1265428215265274,
768
+ "learning_rate": 3.7781954887218046e-05,
769
+ "loss": 0.9817,
770
+ "step": 1030
771
+ },
772
+ {
773
+ "epoch": 2.67524115755627,
774
+ "grad_norm": 0.13538296520709991,
775
+ "learning_rate": 3.496240601503759e-05,
776
+ "loss": 0.9721,
777
+ "step": 1040
778
+ },
779
+ {
780
+ "epoch": 2.7009646302250805,
781
+ "grad_norm": 0.1293276697397232,
782
+ "learning_rate": 3.214285714285714e-05,
783
+ "loss": 0.9799,
784
+ "step": 1050
785
+ },
786
+ {
787
+ "epoch": 2.7266881028938905,
788
+ "grad_norm": 0.12871681153774261,
789
+ "learning_rate": 2.9323308270676686e-05,
790
+ "loss": 0.9944,
791
+ "step": 1060
792
+ },
793
+ {
794
+ "epoch": 2.752411575562701,
795
+ "grad_norm": 0.13096405565738678,
796
+ "learning_rate": 2.6503759398496238e-05,
797
+ "loss": 0.9788,
798
+ "step": 1070
799
+ },
800
+ {
801
+ "epoch": 2.778135048231511,
802
+ "grad_norm": 0.1427333801984787,
803
+ "learning_rate": 2.3684210526315787e-05,
804
+ "loss": 0.9701,
805
+ "step": 1080
806
+ },
807
+ {
808
+ "epoch": 2.8038585209003215,
809
+ "grad_norm": 0.1345263570547104,
810
+ "learning_rate": 2.0864661654135336e-05,
811
+ "loss": 0.9786,
812
+ "step": 1090
813
+ },
814
+ {
815
+ "epoch": 2.829581993569132,
816
+ "grad_norm": 0.12688259780406952,
817
+ "learning_rate": 1.8045112781954885e-05,
818
+ "loss": 0.9705,
819
+ "step": 1100
820
+ },
821
+ {
822
+ "epoch": 2.855305466237942,
823
+ "grad_norm": 0.12778617441654205,
824
+ "learning_rate": 1.5225563909774434e-05,
825
+ "loss": 0.9824,
826
+ "step": 1110
827
+ },
828
+ {
829
+ "epoch": 2.8810289389067525,
830
+ "grad_norm": 0.1293039619922638,
831
+ "learning_rate": 1.2406015037593982e-05,
832
+ "loss": 0.9892,
833
+ "step": 1120
834
+ },
835
+ {
836
+ "epoch": 2.906752411575563,
837
+ "grad_norm": 0.1282673329114914,
838
+ "learning_rate": 9.586466165413533e-06,
839
+ "loss": 0.9799,
840
+ "step": 1130
841
+ },
842
+ {
843
+ "epoch": 2.932475884244373,
844
+ "grad_norm": 0.12761889398097992,
845
+ "learning_rate": 6.766917293233082e-06,
846
+ "loss": 0.9863,
847
+ "step": 1140
848
+ },
849
+ {
850
+ "epoch": 2.958199356913183,
851
+ "grad_norm": 0.13192933797836304,
852
+ "learning_rate": 3.947368421052631e-06,
853
+ "loss": 0.9882,
854
+ "step": 1150
855
+ },
856
+ {
857
+ "epoch": 2.9839228295819935,
858
+ "grad_norm": 0.12644025683403015,
859
+ "learning_rate": 1.1278195488721803e-06,
860
+ "loss": 0.9667,
861
+ "step": 1160
862
+ }
863
+ ],
864
+ "logging_steps": 10,
865
+ "max_steps": 1164,
866
+ "num_input_tokens_seen": 0,
867
+ "num_train_epochs": 3,
868
+ "save_steps": 200,
869
+ "stateful_callbacks": {
870
+ "TrainerControl": {
871
+ "args": {
872
+ "should_epoch_stop": false,
873
+ "should_evaluate": false,
874
+ "should_log": false,
875
+ "should_save": true,
876
+ "should_training_stop": true
877
+ },
878
+ "attributes": {}
879
+ }
880
+ },
881
+ "total_flos": 2.2857331693584384e+17,
882
+ "train_batch_size": 4,
883
+ "trial_name": null,
884
+ "trial_params": null
885
+ }
checkpoint-1164/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5844d0b7bf295f3ab4a8da73232006a40fc200ad74a77a9010df10478b55d69
3
+ size 5240
checkpoint-800/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.3.dev0
checkpoint-800/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_dropout": 0.05,
17
+ "megatron_config": null,
18
+ "megatron_core": "megatron.core",
19
+ "modules_to_save": null,
20
+ "peft_type": "LORA",
21
+ "r": 16,
22
+ "rank_pattern": {},
23
+ "revision": null,
24
+ "target_modules": [
25
+ "v_proj",
26
+ "q_proj",
27
+ "k_proj",
28
+ "o_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
checkpoint-800/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca826ab76b1222fa6e476b76e62ba73868fd2f9406c00b29f80b40a006013264
3
+ size 18045856
checkpoint-800/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64a0ea63545bfcea03ee0fa43ebf324f88059c21a61ddde9a7ce61752718b06d
3
+ size 36192634
checkpoint-800/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1db5c74dcbf0daf8022fe86c1aec8f2c02d5ef5627cb8b909eab8c6e50ebdcd7
3
+ size 14244
checkpoint-800/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d52c6171b507f35f951a06698eb1d668be5d777104d184922d1b62147ff7cc55
3
+ size 1064
checkpoint-800/trainer_state.json ADDED
@@ -0,0 +1,625 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 1.0042115449905396,
3
+ "best_model_checkpoint": "./lora-alpaca3/checkpoint-800",
4
+ "epoch": 2.057877813504823,
5
+ "eval_steps": 200,
6
+ "global_step": 800,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02572347266881029,
13
+ "grad_norm": 0.5646638870239258,
14
+ "learning_rate": 2.9999999999999997e-05,
15
+ "loss": 1.9009,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.05144694533762058,
20
+ "grad_norm": 0.5377612709999084,
21
+ "learning_rate": 5.9999999999999995e-05,
22
+ "loss": 1.8355,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.07717041800643087,
27
+ "grad_norm": 0.5958595871925354,
28
+ "learning_rate": 8.999999999999999e-05,
29
+ "loss": 1.6639,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.10289389067524116,
34
+ "grad_norm": 0.5721263885498047,
35
+ "learning_rate": 0.00011999999999999999,
36
+ "loss": 1.3994,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.12861736334405144,
41
+ "grad_norm": 0.2665337026119232,
42
+ "learning_rate": 0.00015,
43
+ "loss": 1.1767,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.15434083601286175,
48
+ "grad_norm": 0.12332847714424133,
49
+ "learning_rate": 0.00017999999999999998,
50
+ "loss": 1.1413,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.18006430868167203,
55
+ "grad_norm": 0.12157242000102997,
56
+ "learning_rate": 0.00020999999999999998,
57
+ "loss": 1.1103,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.2057877813504823,
62
+ "grad_norm": 0.12799611687660217,
63
+ "learning_rate": 0.00023999999999999998,
64
+ "loss": 1.1003,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.2315112540192926,
69
+ "grad_norm": 0.12139850109815598,
70
+ "learning_rate": 0.00027,
71
+ "loss": 1.084,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.2572347266881029,
76
+ "grad_norm": 0.144248366355896,
77
+ "learning_rate": 0.0003,
78
+ "loss": 1.0722,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.2829581993569132,
83
+ "grad_norm": 0.15326175093650818,
84
+ "learning_rate": 0.00029718045112781953,
85
+ "loss": 1.0731,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.3086816720257235,
90
+ "grad_norm": 0.12561754882335663,
91
+ "learning_rate": 0.00029436090225563904,
92
+ "loss": 1.0537,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.33440514469453375,
97
+ "grad_norm": 0.15570670366287231,
98
+ "learning_rate": 0.0002915413533834586,
99
+ "loss": 1.049,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.36012861736334406,
104
+ "grad_norm": 0.14343878626823425,
105
+ "learning_rate": 0.00028872180451127816,
106
+ "loss": 1.0273,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.3858520900321543,
111
+ "grad_norm": 0.1315772831439972,
112
+ "learning_rate": 0.0002859022556390977,
113
+ "loss": 1.0529,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.4115755627009646,
118
+ "grad_norm": 0.13874055445194244,
119
+ "learning_rate": 0.0002830827067669173,
120
+ "loss": 1.044,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.43729903536977494,
125
+ "grad_norm": 0.1271531730890274,
126
+ "learning_rate": 0.00028026315789473683,
127
+ "loss": 1.0388,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.4630225080385852,
132
+ "grad_norm": 0.12684497237205505,
133
+ "learning_rate": 0.0002774436090225564,
134
+ "loss": 1.0385,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.4887459807073955,
139
+ "grad_norm": 0.11675913631916046,
140
+ "learning_rate": 0.0002746240601503759,
141
+ "loss": 1.0349,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.5144694533762058,
146
+ "grad_norm": 0.15151233971118927,
147
+ "learning_rate": 0.00027180451127819546,
148
+ "loss": 1.0282,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.5144694533762058,
153
+ "eval_loss": 1.0400722026824951,
154
+ "eval_runtime": 55.5366,
155
+ "eval_samples_per_second": 36.012,
156
+ "eval_steps_per_second": 4.502,
157
+ "step": 200
158
+ },
159
+ {
160
+ "epoch": 0.5401929260450161,
161
+ "grad_norm": 0.1420961171388626,
162
+ "learning_rate": 0.000268984962406015,
163
+ "loss": 1.0297,
164
+ "step": 210
165
+ },
166
+ {
167
+ "epoch": 0.5659163987138264,
168
+ "grad_norm": 0.13161741197109222,
169
+ "learning_rate": 0.0002661654135338346,
170
+ "loss": 1.0276,
171
+ "step": 220
172
+ },
173
+ {
174
+ "epoch": 0.5916398713826366,
175
+ "grad_norm": 0.13450871407985687,
176
+ "learning_rate": 0.00026334586466165413,
177
+ "loss": 1.0285,
178
+ "step": 230
179
+ },
180
+ {
181
+ "epoch": 0.617363344051447,
182
+ "grad_norm": 0.13193918764591217,
183
+ "learning_rate": 0.0002605263157894737,
184
+ "loss": 1.0309,
185
+ "step": 240
186
+ },
187
+ {
188
+ "epoch": 0.6430868167202572,
189
+ "grad_norm": 0.1393500566482544,
190
+ "learning_rate": 0.0002577067669172932,
191
+ "loss": 1.0315,
192
+ "step": 250
193
+ },
194
+ {
195
+ "epoch": 0.6688102893890675,
196
+ "grad_norm": 0.11902929842472076,
197
+ "learning_rate": 0.00025488721804511276,
198
+ "loss": 1.0347,
199
+ "step": 260
200
+ },
201
+ {
202
+ "epoch": 0.6945337620578779,
203
+ "grad_norm": 0.1258976310491562,
204
+ "learning_rate": 0.0002520676691729323,
205
+ "loss": 1.0273,
206
+ "step": 270
207
+ },
208
+ {
209
+ "epoch": 0.7202572347266881,
210
+ "grad_norm": 0.12598267197608948,
211
+ "learning_rate": 0.0002492481203007519,
212
+ "loss": 1.0128,
213
+ "step": 280
214
+ },
215
+ {
216
+ "epoch": 0.7459807073954984,
217
+ "grad_norm": 0.122463159263134,
218
+ "learning_rate": 0.0002464285714285714,
219
+ "loss": 1.0251,
220
+ "step": 290
221
+ },
222
+ {
223
+ "epoch": 0.7717041800643086,
224
+ "grad_norm": 0.1293506771326065,
225
+ "learning_rate": 0.00024360902255639094,
226
+ "loss": 1.0317,
227
+ "step": 300
228
+ },
229
+ {
230
+ "epoch": 0.797427652733119,
231
+ "grad_norm": 0.13788191974163055,
232
+ "learning_rate": 0.00024078947368421052,
233
+ "loss": 1.029,
234
+ "step": 310
235
+ },
236
+ {
237
+ "epoch": 0.8231511254019293,
238
+ "grad_norm": 0.1445332169532776,
239
+ "learning_rate": 0.00023796992481203005,
240
+ "loss": 1.0173,
241
+ "step": 320
242
+ },
243
+ {
244
+ "epoch": 0.8488745980707395,
245
+ "grad_norm": 0.11408714205026627,
246
+ "learning_rate": 0.00023515037593984961,
247
+ "loss": 1.0109,
248
+ "step": 330
249
+ },
250
+ {
251
+ "epoch": 0.8745980707395499,
252
+ "grad_norm": 0.11767855286598206,
253
+ "learning_rate": 0.00023233082706766915,
254
+ "loss": 1.0116,
255
+ "step": 340
256
+ },
257
+ {
258
+ "epoch": 0.9003215434083601,
259
+ "grad_norm": 0.12555481493473053,
260
+ "learning_rate": 0.0002295112781954887,
261
+ "loss": 1.0144,
262
+ "step": 350
263
+ },
264
+ {
265
+ "epoch": 0.9260450160771704,
266
+ "grad_norm": 0.12403016537427902,
267
+ "learning_rate": 0.00022669172932330824,
268
+ "loss": 1.0299,
269
+ "step": 360
270
+ },
271
+ {
272
+ "epoch": 0.9517684887459807,
273
+ "grad_norm": 0.12968535721302032,
274
+ "learning_rate": 0.0002238721804511278,
275
+ "loss": 1.0081,
276
+ "step": 370
277
+ },
278
+ {
279
+ "epoch": 0.977491961414791,
280
+ "grad_norm": 0.12369370460510254,
281
+ "learning_rate": 0.00022105263157894733,
282
+ "loss": 1.0065,
283
+ "step": 380
284
+ },
285
+ {
286
+ "epoch": 1.0032154340836013,
287
+ "grad_norm": 0.12212081998586655,
288
+ "learning_rate": 0.0002182330827067669,
289
+ "loss": 1.0448,
290
+ "step": 390
291
+ },
292
+ {
293
+ "epoch": 1.0289389067524115,
294
+ "grad_norm": 0.1301109939813614,
295
+ "learning_rate": 0.00021541353383458647,
296
+ "loss": 1.0052,
297
+ "step": 400
298
+ },
299
+ {
300
+ "epoch": 1.0289389067524115,
301
+ "eval_loss": 1.0189071893692017,
302
+ "eval_runtime": 55.4593,
303
+ "eval_samples_per_second": 36.062,
304
+ "eval_steps_per_second": 4.508,
305
+ "step": 400
306
+ },
307
+ {
308
+ "epoch": 1.0546623794212218,
309
+ "grad_norm": 0.13505908846855164,
310
+ "learning_rate": 0.000212593984962406,
311
+ "loss": 1.0009,
312
+ "step": 410
313
+ },
314
+ {
315
+ "epoch": 1.0803858520900322,
316
+ "grad_norm": 0.12307268381118774,
317
+ "learning_rate": 0.00020977443609022556,
318
+ "loss": 1.0039,
319
+ "step": 420
320
+ },
321
+ {
322
+ "epoch": 1.1061093247588425,
323
+ "grad_norm": 0.11501840502023697,
324
+ "learning_rate": 0.0002069548872180451,
325
+ "loss": 0.9988,
326
+ "step": 430
327
+ },
328
+ {
329
+ "epoch": 1.1318327974276527,
330
+ "grad_norm": 0.12922251224517822,
331
+ "learning_rate": 0.00020413533834586463,
332
+ "loss": 0.9938,
333
+ "step": 440
334
+ },
335
+ {
336
+ "epoch": 1.157556270096463,
337
+ "grad_norm": 0.12304320186376572,
338
+ "learning_rate": 0.0002013157894736842,
339
+ "loss": 1.0223,
340
+ "step": 450
341
+ },
342
+ {
343
+ "epoch": 1.1832797427652733,
344
+ "grad_norm": 0.11323860287666321,
345
+ "learning_rate": 0.00019849624060150372,
346
+ "loss": 0.9957,
347
+ "step": 460
348
+ },
349
+ {
350
+ "epoch": 1.2090032154340835,
351
+ "grad_norm": 0.1335834562778473,
352
+ "learning_rate": 0.00019567669172932328,
353
+ "loss": 1.0042,
354
+ "step": 470
355
+ },
356
+ {
357
+ "epoch": 1.234726688102894,
358
+ "grad_norm": 0.12371603399515152,
359
+ "learning_rate": 0.00019285714285714286,
360
+ "loss": 1.0056,
361
+ "step": 480
362
+ },
363
+ {
364
+ "epoch": 1.2604501607717042,
365
+ "grad_norm": 0.12318002432584763,
366
+ "learning_rate": 0.0001900375939849624,
367
+ "loss": 1.0122,
368
+ "step": 490
369
+ },
370
+ {
371
+ "epoch": 1.2861736334405145,
372
+ "grad_norm": 0.13187570869922638,
373
+ "learning_rate": 0.00018721804511278195,
374
+ "loss": 0.9971,
375
+ "step": 500
376
+ },
377
+ {
378
+ "epoch": 1.3118971061093248,
379
+ "grad_norm": 0.11861589550971985,
380
+ "learning_rate": 0.00018439849624060149,
381
+ "loss": 0.9926,
382
+ "step": 510
383
+ },
384
+ {
385
+ "epoch": 1.337620578778135,
386
+ "grad_norm": 0.11287492513656616,
387
+ "learning_rate": 0.00018157894736842105,
388
+ "loss": 1.016,
389
+ "step": 520
390
+ },
391
+ {
392
+ "epoch": 1.3633440514469453,
393
+ "grad_norm": 0.1384376585483551,
394
+ "learning_rate": 0.00017875939849624058,
395
+ "loss": 1.0059,
396
+ "step": 530
397
+ },
398
+ {
399
+ "epoch": 1.3890675241157555,
400
+ "grad_norm": 0.12147587537765503,
401
+ "learning_rate": 0.00017593984962406014,
402
+ "loss": 1.0213,
403
+ "step": 540
404
+ },
405
+ {
406
+ "epoch": 1.414790996784566,
407
+ "grad_norm": 0.13031207025051117,
408
+ "learning_rate": 0.00017312030075187967,
409
+ "loss": 1.005,
410
+ "step": 550
411
+ },
412
+ {
413
+ "epoch": 1.4405144694533762,
414
+ "grad_norm": 0.13779744505882263,
415
+ "learning_rate": 0.00017030075187969925,
416
+ "loss": 1.0077,
417
+ "step": 560
418
+ },
419
+ {
420
+ "epoch": 1.4662379421221865,
421
+ "grad_norm": 0.13196057081222534,
422
+ "learning_rate": 0.00016748120300751879,
423
+ "loss": 0.9944,
424
+ "step": 570
425
+ },
426
+ {
427
+ "epoch": 1.4919614147909968,
428
+ "grad_norm": 0.117030069231987,
429
+ "learning_rate": 0.00016466165413533835,
430
+ "loss": 1.0082,
431
+ "step": 580
432
+ },
433
+ {
434
+ "epoch": 1.517684887459807,
435
+ "grad_norm": 0.1274162381887436,
436
+ "learning_rate": 0.00016184210526315788,
437
+ "loss": 1.0102,
438
+ "step": 590
439
+ },
440
+ {
441
+ "epoch": 1.5434083601286175,
442
+ "grad_norm": 0.13315673172473907,
443
+ "learning_rate": 0.00015902255639097744,
444
+ "loss": 0.985,
445
+ "step": 600
446
+ },
447
+ {
448
+ "epoch": 1.5434083601286175,
449
+ "eval_loss": 1.0096462965011597,
450
+ "eval_runtime": 55.507,
451
+ "eval_samples_per_second": 36.031,
452
+ "eval_steps_per_second": 4.504,
453
+ "step": 600
454
+ },
455
+ {
456
+ "epoch": 1.5691318327974275,
457
+ "grad_norm": 0.12220187485218048,
458
+ "learning_rate": 0.00015620300751879697,
459
+ "loss": 0.9912,
460
+ "step": 610
461
+ },
462
+ {
463
+ "epoch": 1.594855305466238,
464
+ "grad_norm": 0.12432006746530533,
465
+ "learning_rate": 0.00015338345864661653,
466
+ "loss": 0.9963,
467
+ "step": 620
468
+ },
469
+ {
470
+ "epoch": 1.6205787781350482,
471
+ "grad_norm": 0.12138667702674866,
472
+ "learning_rate": 0.00015056390977443606,
473
+ "loss": 1.0014,
474
+ "step": 630
475
+ },
476
+ {
477
+ "epoch": 1.6463022508038585,
478
+ "grad_norm": 0.13801203668117523,
479
+ "learning_rate": 0.00014774436090225562,
480
+ "loss": 0.9922,
481
+ "step": 640
482
+ },
483
+ {
484
+ "epoch": 1.6720257234726688,
485
+ "grad_norm": 0.13330678641796112,
486
+ "learning_rate": 0.00014492481203007518,
487
+ "loss": 0.9897,
488
+ "step": 650
489
+ },
490
+ {
491
+ "epoch": 1.697749196141479,
492
+ "grad_norm": 0.12127404659986496,
493
+ "learning_rate": 0.0001421052631578947,
494
+ "loss": 0.9898,
495
+ "step": 660
496
+ },
497
+ {
498
+ "epoch": 1.7234726688102895,
499
+ "grad_norm": 0.13159097731113434,
500
+ "learning_rate": 0.00013928571428571427,
501
+ "loss": 0.9943,
502
+ "step": 670
503
+ },
504
+ {
505
+ "epoch": 1.7491961414790995,
506
+ "grad_norm": 0.13246209919452667,
507
+ "learning_rate": 0.00013646616541353383,
508
+ "loss": 1.0048,
509
+ "step": 680
510
+ },
511
+ {
512
+ "epoch": 1.77491961414791,
513
+ "grad_norm": 0.11693169921636581,
514
+ "learning_rate": 0.00013364661654135336,
515
+ "loss": 0.9996,
516
+ "step": 690
517
+ },
518
+ {
519
+ "epoch": 1.8006430868167203,
520
+ "grad_norm": 0.13176512718200684,
521
+ "learning_rate": 0.00013082706766917292,
522
+ "loss": 0.9923,
523
+ "step": 700
524
+ },
525
+ {
526
+ "epoch": 1.8263665594855305,
527
+ "grad_norm": 0.1224486380815506,
528
+ "learning_rate": 0.00012800751879699248,
529
+ "loss": 0.9799,
530
+ "step": 710
531
+ },
532
+ {
533
+ "epoch": 1.852090032154341,
534
+ "grad_norm": 0.12146233022212982,
535
+ "learning_rate": 0.000125187969924812,
536
+ "loss": 0.9874,
537
+ "step": 720
538
+ },
539
+ {
540
+ "epoch": 1.877813504823151,
541
+ "grad_norm": 0.12821047008037567,
542
+ "learning_rate": 0.00012236842105263157,
543
+ "loss": 0.9982,
544
+ "step": 730
545
+ },
546
+ {
547
+ "epoch": 1.9035369774919615,
548
+ "grad_norm": 0.12273906171321869,
549
+ "learning_rate": 0.00011954887218045111,
550
+ "loss": 0.9946,
551
+ "step": 740
552
+ },
553
+ {
554
+ "epoch": 1.9292604501607717,
555
+ "grad_norm": 0.1282244175672531,
556
+ "learning_rate": 0.00011672932330827067,
557
+ "loss": 0.9976,
558
+ "step": 750
559
+ },
560
+ {
561
+ "epoch": 1.954983922829582,
562
+ "grad_norm": 0.13315148651599884,
563
+ "learning_rate": 0.00011390977443609022,
564
+ "loss": 1.0012,
565
+ "step": 760
566
+ },
567
+ {
568
+ "epoch": 1.9807073954983923,
569
+ "grad_norm": 0.12510079145431519,
570
+ "learning_rate": 0.00011109022556390976,
571
+ "loss": 0.9865,
572
+ "step": 770
573
+ },
574
+ {
575
+ "epoch": 2.0064308681672025,
576
+ "grad_norm": 0.11581259220838547,
577
+ "learning_rate": 0.00010827067669172931,
578
+ "loss": 1.0306,
579
+ "step": 780
580
+ },
581
+ {
582
+ "epoch": 2.032154340836013,
583
+ "grad_norm": 0.1278076171875,
584
+ "learning_rate": 0.00010545112781954887,
585
+ "loss": 0.9984,
586
+ "step": 790
587
+ },
588
+ {
589
+ "epoch": 2.057877813504823,
590
+ "grad_norm": 0.12879391014575958,
591
+ "learning_rate": 0.00010263157894736841,
592
+ "loss": 0.9729,
593
+ "step": 800
594
+ },
595
+ {
596
+ "epoch": 2.057877813504823,
597
+ "eval_loss": 1.0042115449905396,
598
+ "eval_runtime": 55.4463,
599
+ "eval_samples_per_second": 36.071,
600
+ "eval_steps_per_second": 4.509,
601
+ "step": 800
602
+ }
603
+ ],
604
+ "logging_steps": 10,
605
+ "max_steps": 1164,
606
+ "num_input_tokens_seen": 0,
607
+ "num_train_epochs": 3,
608
+ "save_steps": 200,
609
+ "stateful_callbacks": {
610
+ "TrainerControl": {
611
+ "args": {
612
+ "should_epoch_stop": false,
613
+ "should_evaluate": false,
614
+ "should_log": false,
615
+ "should_save": true,
616
+ "should_training_stop": false
617
+ },
618
+ "attributes": {}
619
+ }
620
+ },
621
+ "total_flos": 1.569606731295621e+17,
622
+ "train_batch_size": 4,
623
+ "trial_name": null,
624
+ "trial_params": null
625
+ }
checkpoint-800/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5844d0b7bf295f3ab4a8da73232006a40fc200ad74a77a9010df10478b55d69
3
+ size 5240