Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## How to use
|
2 |
+
|
3 |
+
```python
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
BIGTRANSLATE_LANG_TABLE = {
|
7 |
+
"zh": "汉语",
|
8 |
+
"es": "西班牙语",
|
9 |
+
"fr": "法语",
|
10 |
+
"de": "德语",
|
11 |
+
"hi": "印地语",
|
12 |
+
"pt": "葡萄牙语",
|
13 |
+
"tr": "土耳其语",
|
14 |
+
"en": "英语",
|
15 |
+
"ja": "日语"
|
16 |
+
}
|
17 |
+
|
18 |
+
def get_prompt(src_lang, tgt_lang, src_sentence):
|
19 |
+
translate_instruct = f"请将以下{BIGTRANSLATE_LANG_TABLE[src_lang]}句子翻译成{BIGTRANSLATE_LANG_TABLE[tgt_lang]}:{src_sentence}"
|
20 |
+
return (
|
21 |
+
"以下是一个描述任务的指令,请写一个完成该指令的适当回复。\n\n"
|
22 |
+
f"### 指令:\n{translate_instruct}\n\n### 回复:")
|
23 |
+
|
24 |
+
|
25 |
+
def translate(input_text, src_lang, trg_lang):
|
26 |
+
prompt = get_prompt(src_lang, trg_lang, input_text)
|
27 |
+
input_ids = tokenizer(prompt, return_tensors="pt")
|
28 |
+
generated_tokens = model.generate(**input_ids, max_new_tokens=256)[0]
|
29 |
+
|
30 |
+
return tokenizer.decode(generated_tokens, skip_special_tokens=True)[len(prompt):]
|
31 |
+
|
32 |
+
translation = translate("set the temperature on my <a>thermostat<a> to <b> 29 degrees <b>", "en", "de") # translation: stell die temperatur auf meinem <a> thermostat <a> auf <b> 29 grad <b>
|
33 |
+
```
|