Update README.md
Browse files
README.md
CHANGED
@@ -24,6 +24,43 @@ YOLO, for "You Only Look Once", is an object detection system in real-time, intr
|
|
24 |
This YOLOv4 library, inspired by previous YOLOv3 implementations here:
|
25 |
* [Yolov3 tensorflow](https://github.com/YunYang1994/tensorflow-yolov3)
|
26 |
* [Yolov3 tf2](https://github.com/zzh8829/yolov3-tf2)uses Tensorflow 2.0 and is available on this [Github](https://github.com/hunglc007/tensorflow-yolov4-tflite).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
### Evaluate on COCO 2017 Dataset
|
29 |
```bash
|
|
|
24 |
This YOLOv4 library, inspired by previous YOLOv3 implementations here:
|
25 |
* [Yolov3 tensorflow](https://github.com/YunYang1994/tensorflow-yolov3)
|
26 |
* [Yolov3 tf2](https://github.com/zzh8829/yolov3-tf2)uses Tensorflow 2.0 and is available on this [Github](https://github.com/hunglc007/tensorflow-yolov4-tflite).
|
27 |
+
|
28 |
+
|
29 |
+
### Limitations and biases
|
30 |
+
|
31 |
+
### How to use YOLOv4tflite
|
32 |
+
You can use this model to detect objects in an image of choice. Follow the following scripts to implement on your own!
|
33 |
+
|
34 |
+
```bash
|
35 |
+
# install git lfs
|
36 |
+
!git lfs install
|
37 |
+
|
38 |
+
# if presented with the error "git: 'lfs' is not a git command. See 'git --help'", try running these linux commands:
|
39 |
+
!curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | sudo bash
|
40 |
+
|
41 |
+
# change directory to base
|
42 |
+
%cd ..
|
43 |
+
|
44 |
+
# install git-lfs
|
45 |
+
!sudo apt-get install git-lfs
|
46 |
+
|
47 |
+
# for message "Git LFS initialized"
|
48 |
+
!git lfs install
|
49 |
+
|
50 |
+
# change directory to yolo_v4_tflite
|
51 |
+
%cd ./yolo_v4_tflite
|
52 |
+
|
53 |
+
# clone this repo into your notebook
|
54 |
+
!git clone https://huggingface.co/SamMorgan/yolo_v4_tflite
|
55 |
+
|
56 |
+
# Run demo tensor flow for an example of how this model works
|
57 |
+
!python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image ./data/kite.jpg --output ./test.jpg
|
58 |
+
|
59 |
+
# Try with your own image
|
60 |
+
!python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image <insert path to image of choice> --output <insert path to output location of choice>
|
61 |
+
|
62 |
+
|
63 |
+
```
|
64 |
|
65 |
### Evaluate on COCO 2017 Dataset
|
66 |
```bash
|