File size: 14,025 Bytes
20e841b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
#! /usr/bin/env python
# coding=utf-8
import os
import cv2
import random
import numpy as np
import tensorflow as tf
import core.utils as utils
from core.config import cfg
class Dataset(object):
"""implement Dataset here"""
def __init__(self, FLAGS, is_training: bool, dataset_type: str = "converted_coco"):
self.tiny = FLAGS.tiny
self.strides, self.anchors, NUM_CLASS, XYSCALE = utils.load_config(FLAGS)
self.dataset_type = dataset_type
self.annot_path = (
cfg.TRAIN.ANNOT_PATH if is_training else cfg.TEST.ANNOT_PATH
)
self.input_sizes = (
cfg.TRAIN.INPUT_SIZE if is_training else cfg.TEST.INPUT_SIZE
)
self.batch_size = (
cfg.TRAIN.BATCH_SIZE if is_training else cfg.TEST.BATCH_SIZE
)
self.data_aug = cfg.TRAIN.DATA_AUG if is_training else cfg.TEST.DATA_AUG
self.train_input_sizes = cfg.TRAIN.INPUT_SIZE
self.classes = utils.read_class_names(cfg.YOLO.CLASSES)
self.num_classes = len(self.classes)
self.anchor_per_scale = cfg.YOLO.ANCHOR_PER_SCALE
self.max_bbox_per_scale = 150
self.annotations = self.load_annotations()
self.num_samples = len(self.annotations)
self.num_batchs = int(np.ceil(self.num_samples / self.batch_size))
self.batch_count = 0
def load_annotations(self):
with open(self.annot_path, "r") as f:
txt = f.readlines()
if self.dataset_type == "converted_coco":
annotations = [
line.strip()
for line in txt
if len(line.strip().split()[1:]) != 0
]
elif self.dataset_type == "yolo":
annotations = []
for line in txt:
image_path = line.strip()
root, _ = os.path.splitext(image_path)
with open(root + ".txt") as fd:
boxes = fd.readlines()
string = ""
for box in boxes:
box = box.strip()
box = box.split()
class_num = int(box[0])
center_x = float(box[1])
center_y = float(box[2])
half_width = float(box[3]) / 2
half_height = float(box[4]) / 2
string += " {},{},{},{},{}".format(
center_x - half_width,
center_y - half_height,
center_x + half_width,
center_y + half_height,
class_num,
)
annotations.append(image_path + string)
np.random.shuffle(annotations)
return annotations
def __iter__(self):
return self
def __next__(self):
with tf.device("/cpu:0"):
# self.train_input_size = random.choice(self.train_input_sizes)
self.train_input_size = cfg.TRAIN.INPUT_SIZE
self.train_output_sizes = self.train_input_size // self.strides
batch_image = np.zeros(
(
self.batch_size,
self.train_input_size,
self.train_input_size,
3,
),
dtype=np.float32,
)
batch_label_sbbox = np.zeros(
(
self.batch_size,
self.train_output_sizes[0],
self.train_output_sizes[0],
self.anchor_per_scale,
5 + self.num_classes,
),
dtype=np.float32,
)
batch_label_mbbox = np.zeros(
(
self.batch_size,
self.train_output_sizes[1],
self.train_output_sizes[1],
self.anchor_per_scale,
5 + self.num_classes,
),
dtype=np.float32,
)
batch_label_lbbox = np.zeros(
(
self.batch_size,
self.train_output_sizes[2],
self.train_output_sizes[2],
self.anchor_per_scale,
5 + self.num_classes,
),
dtype=np.float32,
)
batch_sbboxes = np.zeros(
(self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32
)
batch_mbboxes = np.zeros(
(self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32
)
batch_lbboxes = np.zeros(
(self.batch_size, self.max_bbox_per_scale, 4), dtype=np.float32
)
num = 0
if self.batch_count < self.num_batchs:
while num < self.batch_size:
index = self.batch_count * self.batch_size + num
if index >= self.num_samples:
index -= self.num_samples
annotation = self.annotations[index]
image, bboxes = self.parse_annotation(annotation)
(
label_sbbox,
label_mbbox,
label_lbbox,
sbboxes,
mbboxes,
lbboxes,
) = self.preprocess_true_boxes(bboxes)
batch_image[num, :, :, :] = image
batch_label_sbbox[num, :, :, :, :] = label_sbbox
batch_label_mbbox[num, :, :, :, :] = label_mbbox
batch_label_lbbox[num, :, :, :, :] = label_lbbox
batch_sbboxes[num, :, :] = sbboxes
batch_mbboxes[num, :, :] = mbboxes
batch_lbboxes[num, :, :] = lbboxes
num += 1
self.batch_count += 1
batch_smaller_target = batch_label_sbbox, batch_sbboxes
batch_medium_target = batch_label_mbbox, batch_mbboxes
batch_larger_target = batch_label_lbbox, batch_lbboxes
return (
batch_image,
(
batch_smaller_target,
batch_medium_target,
batch_larger_target,
),
)
else:
self.batch_count = 0
np.random.shuffle(self.annotations)
raise StopIteration
def random_horizontal_flip(self, image, bboxes):
if random.random() < 0.5:
_, w, _ = image.shape
image = image[:, ::-1, :]
bboxes[:, [0, 2]] = w - bboxes[:, [2, 0]]
return image, bboxes
def random_crop(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate(
[
np.min(bboxes[:, 0:2], axis=0),
np.max(bboxes[:, 2:4], axis=0),
],
axis=-1,
)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
crop_xmin = max(
0, int(max_bbox[0] - random.uniform(0, max_l_trans))
)
crop_ymin = max(
0, int(max_bbox[1] - random.uniform(0, max_u_trans))
)
crop_xmax = max(
w, int(max_bbox[2] + random.uniform(0, max_r_trans))
)
crop_ymax = max(
h, int(max_bbox[3] + random.uniform(0, max_d_trans))
)
image = image[crop_ymin:crop_ymax, crop_xmin:crop_xmax]
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] - crop_xmin
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] - crop_ymin
return image, bboxes
def random_translate(self, image, bboxes):
if random.random() < 0.5:
h, w, _ = image.shape
max_bbox = np.concatenate(
[
np.min(bboxes[:, 0:2], axis=0),
np.max(bboxes[:, 2:4], axis=0),
],
axis=-1,
)
max_l_trans = max_bbox[0]
max_u_trans = max_bbox[1]
max_r_trans = w - max_bbox[2]
max_d_trans = h - max_bbox[3]
tx = random.uniform(-(max_l_trans - 1), (max_r_trans - 1))
ty = random.uniform(-(max_u_trans - 1), (max_d_trans - 1))
M = np.array([[1, 0, tx], [0, 1, ty]])
image = cv2.warpAffine(image, M, (w, h))
bboxes[:, [0, 2]] = bboxes[:, [0, 2]] + tx
bboxes[:, [1, 3]] = bboxes[:, [1, 3]] + ty
return image, bboxes
def parse_annotation(self, annotation):
line = annotation.split()
image_path = line[0]
if not os.path.exists(image_path):
raise KeyError("%s does not exist ... " % image_path)
image = cv2.imread(image_path)
if self.dataset_type == "converted_coco":
bboxes = np.array(
[list(map(int, box.split(","))) for box in line[1:]]
)
elif self.dataset_type == "yolo":
height, width, _ = image.shape
bboxes = np.array(
[list(map(float, box.split(","))) for box in line[1:]]
)
bboxes = bboxes * np.array([width, height, width, height, 1])
bboxes = bboxes.astype(np.int64)
if self.data_aug:
image, bboxes = self.random_horizontal_flip(
np.copy(image), np.copy(bboxes)
)
image, bboxes = self.random_crop(np.copy(image), np.copy(bboxes))
image, bboxes = self.random_translate(
np.copy(image), np.copy(bboxes)
)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image, bboxes = utils.image_preprocess(
np.copy(image),
[self.train_input_size, self.train_input_size],
np.copy(bboxes),
)
return image, bboxes
def preprocess_true_boxes(self, bboxes):
label = [
np.zeros(
(
self.train_output_sizes[i],
self.train_output_sizes[i],
self.anchor_per_scale,
5 + self.num_classes,
)
)
for i in range(3)
]
bboxes_xywh = [np.zeros((self.max_bbox_per_scale, 4)) for _ in range(3)]
bbox_count = np.zeros((3,))
for bbox in bboxes:
bbox_coor = bbox[:4]
bbox_class_ind = bbox[4]
onehot = np.zeros(self.num_classes, dtype=np.float)
onehot[bbox_class_ind] = 1.0
uniform_distribution = np.full(
self.num_classes, 1.0 / self.num_classes
)
deta = 0.01
smooth_onehot = onehot * (1 - deta) + deta * uniform_distribution
bbox_xywh = np.concatenate(
[
(bbox_coor[2:] + bbox_coor[:2]) * 0.5,
bbox_coor[2:] - bbox_coor[:2],
],
axis=-1,
)
bbox_xywh_scaled = (
1.0 * bbox_xywh[np.newaxis, :] / self.strides[:, np.newaxis]
)
iou = []
exist_positive = False
for i in range(3):
anchors_xywh = np.zeros((self.anchor_per_scale, 4))
anchors_xywh[:, 0:2] = (
np.floor(bbox_xywh_scaled[i, 0:2]).astype(np.int32) + 0.5
)
anchors_xywh[:, 2:4] = self.anchors[i]
iou_scale = utils.bbox_iou(
bbox_xywh_scaled[i][np.newaxis, :], anchors_xywh
)
iou.append(iou_scale)
iou_mask = iou_scale > 0.3
if np.any(iou_mask):
xind, yind = np.floor(bbox_xywh_scaled[i, 0:2]).astype(
np.int32
)
label[i][yind, xind, iou_mask, :] = 0
label[i][yind, xind, iou_mask, 0:4] = bbox_xywh
label[i][yind, xind, iou_mask, 4:5] = 1.0
label[i][yind, xind, iou_mask, 5:] = smooth_onehot
bbox_ind = int(bbox_count[i] % self.max_bbox_per_scale)
bboxes_xywh[i][bbox_ind, :4] = bbox_xywh
bbox_count[i] += 1
exist_positive = True
if not exist_positive:
best_anchor_ind = np.argmax(np.array(iou).reshape(-1), axis=-1)
best_detect = int(best_anchor_ind / self.anchor_per_scale)
best_anchor = int(best_anchor_ind % self.anchor_per_scale)
xind, yind = np.floor(
bbox_xywh_scaled[best_detect, 0:2]
).astype(np.int32)
label[best_detect][yind, xind, best_anchor, :] = 0
label[best_detect][yind, xind, best_anchor, 0:4] = bbox_xywh
label[best_detect][yind, xind, best_anchor, 4:5] = 1.0
label[best_detect][yind, xind, best_anchor, 5:] = smooth_onehot
bbox_ind = int(
bbox_count[best_detect] % self.max_bbox_per_scale
)
bboxes_xywh[best_detect][bbox_ind, :4] = bbox_xywh
bbox_count[best_detect] += 1
label_sbbox, label_mbbox, label_lbbox = label
sbboxes, mbboxes, lbboxes = bboxes_xywh
return label_sbbox, label_mbbox, label_lbbox, sbboxes, mbboxes, lbboxes
def __len__(self):
return self.num_batchs
|