Update README.md
Browse files
README.md
CHANGED
@@ -83,6 +83,8 @@ Optimising the threshold per label to optimise the F1 metric, the metrics (evalu
|
|
83 |
| surprise | 0.314 | 0.303 | 0.326 | 141 | 0.15 |
|
84 |
| neutral | 0.622 | 0.482 | 0.879 | 1787 | 0.25 |
|
85 |
|
|
|
|
|
86 |
### Use with ONNXRuntime
|
87 |
|
88 |
The input to the model is called `logits`, and there is one output per label. Each output produces a 2d array, with 1 row per input row, and each row having 2 columns - the first being a proba output for the negative case, and the second being a proba output for the positive case.
|
@@ -109,6 +111,8 @@ print(outputs[0])
|
|
109 |
> surprise
|
110 |
print(preds_onnx[0])
|
111 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
|
|
|
|
112 |
```
|
113 |
|
114 |
### Commentary on the dataset
|
|
|
83 |
| surprise | 0.314 | 0.303 | 0.326 | 141 | 0.15 |
|
84 |
| neutral | 0.622 | 0.482 | 0.879 | 1787 | 0.25 |
|
85 |
|
86 |
+
The thesholds are stored in `thresholds.json`.
|
87 |
+
|
88 |
### Use with ONNXRuntime
|
89 |
|
90 |
The input to the model is called `logits`, and there is one output per label. Each output produces a 2d array, with 1 row per input row, and each row having 2 columns - the first being a proba output for the negative case, and the second being a proba output for the positive case.
|
|
|
111 |
> surprise
|
112 |
print(preds_onnx[0])
|
113 |
> array([[0.97136074, 0.02863926]], dtype=float32)
|
114 |
+
|
115 |
+
# load thresholds.json and use that (per label) to convert the positive case score to a binary prediction
|
116 |
```
|
117 |
|
118 |
### Commentary on the dataset
|