TARIC_SLU / hyperparams.yaml
SalimaM's picture
Upload 12 files
51bc847 verified
# Data parameters:
# With data_parallel batch_size is split into N jobs.
# With DDP batch_size is multiplied by N jobs.
batch_size: 6
test_batch_size: 2
# We remove utterances longer than 90s in the train/dev/test sets as
# longer sentences certainly correspond to "open microphones".
avoid_if_longer_than: 90.0
avoid_if_smaller_than: 0.0
dataloader_options:
batch_size: 6
num_workers: 6
shuffle: true
test_dataloader_options:
batch_size: 2
num_workers: 3
# Feature parameters:
sample_rate: 16000
feats_dim: 1024
# Training parameters:
number_of_epochs: 80
lr: 1
lr_wav2vec: 0.0001
annealing_factor: 0.8
annealing_factor_wav2vec: 0.9
improvement_threshold: 0.0025
improvement_threshold_wav2vec: 0.0025
patient: 0
patient_wav2vec: 0
sorting: random
# Model parameters:
activation: &id001 !name:torch.nn.LeakyReLU
dropout: 0.15
cnn_blocks: 0
rnn_layers: 0
dnn_blocks: 1
rnn_neurons: 0
dnn_neurons: 1024
# Wav2Vec parameters:
freeze: false
# Decoding parameters:
blank_index: 0
# Outputs:
output_neurons: 113
# ------ Functions and classes
epoch_counter: &id008 !new:speechbrain.utils.epoch_loop.EpochCounter
limit: 80
wav2vec: &id002 !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2
source: microsoft/wavlm-large
output_norm: true
freeze: false
save_path: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/save/wav2vec.pt
dec: &id003 !new:speechbrain.lobes.models.VanillaNN.VanillaNN
input_shape: [null, null, 1024]
activation: *id001
dnn_blocks: 1
dnn_neurons: 1024
output_lin: &id004 !new:speechbrain.nnet.linear.Linear
input_size: 1024
n_neurons: 113
bias: true
softmax: !new:speechbrain.nnet.activations.Softmax
apply_log: true
ctc_cost: !name:speechbrain.nnet.losses.ctc_loss
blank_index: 0
modules:
wav2vec: *id002
dec: *id003
output_lin: *id004
model: &id005 !new:torch.nn.ModuleList
- [*id003, *id004]
model_wav2vec: !new:torch.nn.ModuleList
- [*id002]
opt_class: !name:torch.optim.Adadelta
lr: 1
rho: 0.95
eps: 1.e-8
opt_class_wav2vec: !name:torch.optim.Adam
lr: 0.0001
lr_annealing: &id006 !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: 1
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
lr_annealing_wav2vec: &id007 !new:speechbrain.nnet.schedulers.NewBobScheduler
initial_value: 0.0001
improvement_threshold: 0.0025
annealing_factor: 0.9
patient: 0
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
checkpoints_dir: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/save
recoverables:
model: *id005
wav2vec: *id002
lr_annealing: *id006
lr_annealing_wav2vec: *id007
counter: *id008
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
save_file: results/TARIC_SLU_wav2vec_wavLM_with_intent_criterion_a100_copie/1212/train_log.txt
ctc_computer: !name:speechbrain.utils.metric_stats.MetricStats
metric: !name:speechbrain.nnet.losses.ctc_loss
blank_index: 0
reduction: batch
error_rate_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
cer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
merge_tokens: true
coer_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
extract_concepts_values: true
keep_values: false
tag_in: <
tag_out: >
cver_computer: !name:speechbrain.utils.metric_stats.ErrorRateStats
extract_concepts_values: true
keep_values: true
tag_in: <
tag_out: >
tokenizer: !new:speechbrain.dataio.encoder.CTCTextEncoder
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
loadables:
model: !ref <model>
wav2vec: !ref <wav2vec>
tokenizer: !ref <tokenizer>
paths:
model: !ref /content/sample_data/SLU/model.cpkt
wav2vec: !ref /content/sample_data/SLU/wav2vec.cpkt
tokenizer: !ref /content/sample_data/SLU/label_encoder.txt
decoding_function: !name:speechbrain.decoders.ctc_greedy_decode
blank_id: 0
# Tag list:
tag_list: <politeness>, <directives_query>, <directives_answer>, <age>, <age_req>,
<age_ticket>, <an>, <answer>, <arrival_time>, <card_price>, <card_type>, <city>,
<city_name_arrival>, <city_name_before>, <city_name_departure>, <city_name_direction>,
<class_number>, <class_type>, <command_task>, <comparatif_age>, <comparatif_distance>,
<comparatif_price>, <comparatif_time>, <coreference_city>, <coreference_departure>,
<date>, <day>, <departure_time>, <discount_gain>, <discount_pourcent>, <duration>,
<duration_req>, <existance>, <existance_req>, <hour_req>, <money_exchange>, <month>,
<negation>, <number>, <number_class>, <number_of_train>, <number_req>, <object>,
<option>, <other_transport>, <part_price>, <part_time>, <period_day>, <period_year>,
<person_name>, <price_req>, <rang>, <ref_object>, <ref_person>, <ref_time>, <relative_day>,
<relative_time>, <state>, <tarif>, <task>, <ticket_number>, <ticket_price>, <ticket_type>,
<time>, <train_type>