Undo breaking change for now
Browse files- tokenization_codegen25.py +10 -10
tokenization_codegen25.py
CHANGED
|
@@ -4,7 +4,7 @@
|
|
| 4 |
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
| 5 |
"""Tokenization classes for CodeGen2.5."""
|
| 6 |
|
| 7 |
-
from typing import List, Optional
|
| 8 |
|
| 9 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 10 |
from transformers.utils import logging
|
|
@@ -59,18 +59,18 @@ def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
|
| 59 |
]
|
| 60 |
return fim_tokens
|
| 61 |
|
| 62 |
-
def
|
| 63 |
tokens = []
|
| 64 |
tokens += [f"<dummy_{i}>" for i in range(4)]
|
| 65 |
tokens.append("<sep>") # 50317
|
| 66 |
tokens.append("<eom>") # 50318
|
| 67 |
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
| 68 |
-
return tokens
|
| 69 |
|
| 70 |
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
| 71 |
add_tabs = include_tabs(n_min=2, n_max=10)
|
| 72 |
fim_tokens = include_fim_tokens()
|
| 73 |
-
|
| 74 |
|
| 75 |
tokenizer = tiktoken.get_encoding(base)
|
| 76 |
|
|
@@ -90,9 +90,9 @@ def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
|
| 90 |
for sp in fim_tokens:
|
| 91 |
special_tokens[sp] = idx
|
| 92 |
idx += 1
|
| 93 |
-
for sp in
|
| 94 |
special_tokens[sp] = idx
|
| 95 |
-
idx += 1
|
| 96 |
|
| 97 |
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
| 98 |
special_tokens[pad_token] = idx
|
|
@@ -115,7 +115,7 @@ def tiktoken_tokenizer(base="gpt2", pad_token=None, add_special=True):
|
|
| 115 |
|
| 116 |
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
| 117 |
"""
|
| 118 |
-
Construct a
|
| 119 |
Args:
|
| 120 |
vocab_file (`str`):
|
| 121 |
Path to the vocabulary file.
|
|
@@ -133,8 +133,6 @@ class CodeGen25Tokenizer(PreTrainedTokenizer):
|
|
| 133 |
):
|
| 134 |
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
| 135 |
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
| 136 |
-
self.add_eos_token = add_eos_token
|
| 137 |
-
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
| 138 |
super().__init__(
|
| 139 |
pad_token=pad_token_added,
|
| 140 |
eos_token=eos_token_added,
|
|
@@ -142,6 +140,8 @@ class CodeGen25Tokenizer(PreTrainedTokenizer):
|
|
| 142 |
add_special_tokens=add_special_tokens,
|
| 143 |
**kwargs,
|
| 144 |
)
|
|
|
|
|
|
|
| 145 |
|
| 146 |
@property
|
| 147 |
def vocab_size(self):
|
|
@@ -150,7 +150,7 @@ class CodeGen25Tokenizer(PreTrainedTokenizer):
|
|
| 150 |
|
| 151 |
def get_vocab(self):
|
| 152 |
"""Returns vocab as a dict"""
|
| 153 |
-
vocab = {self.
|
| 154 |
return vocab
|
| 155 |
|
| 156 |
def _tokenize(self, text, **kwargs):
|
|
|
|
| 4 |
# For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/Apache-2.0
|
| 5 |
"""Tokenization classes for CodeGen2.5."""
|
| 6 |
|
| 7 |
+
from typing import List, Optional
|
| 8 |
|
| 9 |
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 10 |
from transformers.utils import logging
|
|
|
|
| 59 |
]
|
| 60 |
return fim_tokens
|
| 61 |
|
| 62 |
+
def include_codegen2_tokens():
|
| 63 |
tokens = []
|
| 64 |
tokens += [f"<dummy_{i}>" for i in range(4)]
|
| 65 |
tokens.append("<sep>") # 50317
|
| 66 |
tokens.append("<eom>") # 50318
|
| 67 |
tokens += [f"<mask_{i}>" for i in reversed(range(1, 51199-50318+1))]
|
| 68 |
+
return tokens
|
| 69 |
|
| 70 |
add_whitespaces = include_whitespace(n_min=2, n_max=32)
|
| 71 |
add_tabs = include_tabs(n_min=2, n_max=10)
|
| 72 |
fim_tokens = include_fim_tokens()
|
| 73 |
+
codegen2_tokens = include_codegen2_tokens()
|
| 74 |
|
| 75 |
tokenizer = tiktoken.get_encoding(base)
|
| 76 |
|
|
|
|
| 90 |
for sp in fim_tokens:
|
| 91 |
special_tokens[sp] = idx
|
| 92 |
idx += 1
|
| 93 |
+
for sp in codegen2_tokens:
|
| 94 |
special_tokens[sp] = idx
|
| 95 |
+
idx += 1
|
| 96 |
|
| 97 |
if pad_token and pad_token not in tokenizer._special_tokens and pad_token not in special_tokens:
|
| 98 |
special_tokens[pad_token] = idx
|
|
|
|
| 115 |
|
| 116 |
class CodeGen25Tokenizer(PreTrainedTokenizer):
|
| 117 |
"""
|
| 118 |
+
Construct a CodeGen2.5 tokenizer. Based on byte-level Byte-Pair-Encoding.
|
| 119 |
Args:
|
| 120 |
vocab_file (`str`):
|
| 121 |
Path to the vocabulary file.
|
|
|
|
| 133 |
):
|
| 134 |
pad_token_added = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
| 135 |
eos_token_added = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
|
|
|
|
|
|
| 136 |
super().__init__(
|
| 137 |
pad_token=pad_token_added,
|
| 138 |
eos_token=eos_token_added,
|
|
|
|
| 140 |
add_special_tokens=add_special_tokens,
|
| 141 |
**kwargs,
|
| 142 |
)
|
| 143 |
+
self.add_eos_token = add_eos_token
|
| 144 |
+
self.encoder = tiktoken_tokenizer(base="gpt2", pad_token=pad_token, add_special=add_special_tokens)
|
| 145 |
|
| 146 |
@property
|
| 147 |
def vocab_size(self):
|
|
|
|
| 150 |
|
| 151 |
def get_vocab(self):
|
| 152 |
"""Returns vocab as a dict"""
|
| 153 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
| 154 |
return vocab
|
| 155 |
|
| 156 |
def _tokenize(self, text, **kwargs):
|