Hiroaki Hayashi commited on
Commit
db240a5
·
1 Parent(s): 40d3f28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -3
README.md CHANGED
@@ -17,7 +17,7 @@ This checkpoint (CodeGen-NL 350M) was pre-trained on [the Pile](https://github.c
17
 
18
  CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
19
  The family of models are trained using 4 TPU-v4 chips by Google, leveraging data and model parallelism.
20
- See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474)for more details.
21
 
22
  ## Evaluation results
23
 
@@ -37,12 +37,11 @@ This model can be easily loaded using the `AutoModelForCausalLM` functionality:
37
  from transformers import AutoTokenizer, AutoModelForCausalLM
38
  tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-nl')
39
  model = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-350M-nl')
 
40
  text = "def hello_world():"
41
  input_ids = tokenizer(text, return_tensors="pt").input_ids
42
- # simply generate a single sequence
43
  generated_ids = model.generate(input_ids, max_length=128)
44
  print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
45
- # this prints "{user.username}"
46
  ```
47
 
48
  ## BibTeX entry and citation info
 
17
 
18
  CodeGen was trained using cross-entropy loss to maximize the likelihood of sequential inputs.
19
  The family of models are trained using 4 TPU-v4 chips by Google, leveraging data and model parallelism.
20
+ See Section 2.3 of the [paper](https://arxiv.org/abs/2203.13474) for more details.
21
 
22
  ## Evaluation results
23
 
 
37
  from transformers import AutoTokenizer, AutoModelForCausalLM
38
  tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-nl')
39
  model = AutoModelForCausalLM.from_pretrained('Salesforce/codegen-350M-nl')
40
+
41
  text = "def hello_world():"
42
  input_ids = tokenizer(text, return_tensors="pt").input_ids
 
43
  generated_ids = model.generate(input_ids, max_length=128)
44
  print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
 
45
  ```
46
 
47
  ## BibTeX entry and citation info