import argparse import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer from datasets import Dataset import pandas as pd import numpy as np from sklearn.metrics import accuracy_score, f1_score, matthews_corrcoef, balanced_accuracy_score, roc_auc_score, confusion_matrix from utils import fasta_to_df def compute_metrics(logits, labels): predictions = np.argmax(logits, axis=1) labels = np.array(labels, dtype=int) predictions = np.array(predictions, dtype=int) acc = accuracy_score(labels, predictions) f1 = f1_score(labels, predictions, average='weighted') mcc = matthews_corrcoef(labels, predictions) balanced_acc = balanced_accuracy_score(labels, predictions) auc_roc = None if len(np.unique(labels)) == 2: probs = np.exp(logits[:, 1]) / np.sum(np.exp(logits), axis=1) auc_roc = roc_auc_score(labels, probs) cm = confusion_matrix(labels, predictions) return { 'accuracy': acc, 'f1_score': f1, 'mcc': mcc, 'auc_roc': auc_roc, 'balanced_accuracy': balanced_acc, 'confusion_matrix': cm.tolist() } def encode_sequence(sequence, tokenizer, max_length): return tokenizer(sequence, truncation=True, padding='max_length', max_length=max_length, return_tensors='pt') def evaluate(model_path, test_file=None, sequence=None): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForSequenceClassification.from_pretrained(model_path, ignore_mismatched_sizes=True).to(device) tokenizer = AutoTokenizer.from_pretrained(model_path) if sequence: inputs = encode_sequence(sequence, tokenizer, tokenizer.model_max_length) with torch.no_grad(): outputs = model(**{k: v.to(device) for k, v in inputs.items()}) logits = outputs.logits.cpu().numpy() print("Single Sequence Prediction:", np.argmax(logits, axis=1)) return test_df = fasta_to_df(test_file) label_map = { 'non-pathogen': 0, 'pathogen': 1 } test_df['label'] = test_df['label'].str.lower().map(label_map) dataset = Dataset.from_pandas(test_df) dataset = dataset.map(lambda x: encode_sequence(x['sequence'], tokenizer, tokenizer.model_max_length), batched=True) dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'label']) dataloader = torch.utils.data.DataLoader(dataset, batch_size=8) logits_list, labels_list = [], [] model.eval() with torch.no_grad(): for batch in dataloader: inputs = {k: v.to(device) for k, v in batch.items() if k != 'label'} # print(type(batch['label']), batch['label']) labels = np.array(batch['label']) outputs = model(**inputs) logits_list.append(outputs.logits.cpu().numpy()) labels_list.append(labels) logits = np.concatenate(logits_list, axis=0) labels = np.concatenate(labels_list, axis=0) results = compute_metrics(logits, labels) print("Evaluation Metrics:", results) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model_path", type=str, required=True, help="Path to the fine-tuned model directory") parser.add_argument("--test_file", type=str, help="Path to the test fasta file") parser.add_argument("--sequence", type=str, help="Single DNA sequence to classify") args = parser.parse_args() evaluate(args.model_path, args.test_file, args.sequence)