File size: 4,336 Bytes
af5b802
6595fe5
af5b802
 
 
6595fe5
 
 
af5b802
 
 
 
 
 
7283cbe
 
af5b802
 
546d418
 
af5b802
 
 
 
 
546d418
af5b802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0002cc1
 
 
 
 
2314f4e
af5b802
0002cc1
af5b802
 
 
 
 
 
6595fe5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: cc-by-nc-4.0
tags:
- vision
- video-classification
language:
- en
pipeline_tag: video-classification
---

# FAL - Framework For Automated Labeling Of Videos (FALVideoClassifier)

FAL (Framework for Automated Labeling Of Videos) is a custom video classification model developed by **SVECTOR** and fine-tuned on the **FAL-500** dataset. This model is designed for efficient video understanding and classification, leveraging state-of-the-art video processing techniques.

<img src="https://cdn-uploads.huggingface.co/production/uploads/6631e2b06d207536a4651738/Sf9tEMK8989JpQorvokT_.png" alt="Demo" width="560">

## Model Overview

This model, referred to as `FALVideoClassifier`, fine-tuned on **FAL-500** Dataset, and optimized for automated video labeling tasks. It is capable of classifying a video into one of the 5
00 possible labels from the FAL-500 dataset.

This model was developed by **SVECTOR** as part of our initiative to advance automated video understanding and classification technologies. 

## Intended Uses & Limitations

This model is designed for video classification tasks, and you can use it to classify videos into one of the 500 classes from the FAL-500 dataset. Please note that the model was trained on **FAL-500** and may not perform as well on datasets that significantly differ from this.

### Intended Use:
- Automated video labeling
- Video content classification
- Research in video understanding and machine learning

### Limitations:
- Only trained on FAL-500
- May not generalize well to out-of-domain videos without further fine-tuning
- Requires videos to be pre-processed (such as resizing frames, normalization, etc.)

## How to Use

To use this model for video classification, follow these steps:

### Installation:

Ensure you have the necessary dependencies installed:

```bash
pip install torch torchvision transformers
```

### Code Example:

Here is an example Python code snippet for using the FAL model to classify a video:

```python
from transformers import AutoImageProcessor, FALVideoClassifierForVideoClassification
import numpy as np
import torch

# Simulating a sample video (8 frames of size 224x224 with 3 color channels)
video = list(np.random.randn(8, 3, 224, 224))  # 8 frames, each of size 224x224 with RGB channels

# Load the image processor and model
processor = AutoImageProcessor.from_pretrained("SVECTOR-CORPORATION/FAL")
model = FALVideoClassifierForVideoClassification.from_pretrained("SVECTOR-CORPORATION/FAL")

# Pre-process the video input
inputs = processor(video, return_tensors="pt")

# Run inference with no gradient calculation (evaluation mode)
with torch.no_grad():
    outputs = model(**inputs)
    logits = outputs.logits

# Find the predicted class (highest logit)
predicted_class_idx = logits.argmax(-1).item()

# Output the predicted label
print("Predicted class:", model.config.id2label[predicted_class_idx])
```

### Model Details:

- **Model Name**: `FALVideoClassifier`
- **Dataset Used**: FAL-S500
- **Input Size**: 8 frames of size 224x224 with 3 color channels (RGB)

### Configuration:

The `FALVideoClassifier` uses the following hyperparameters:

- `num_frames`: Number of frames in the video (e.g., 8)
- `num_labels`: The number of possible video classes (500 for FAL-500)
- `hidden_size`: Hidden size for transformer layers (768)
- `attention_probs_dropout_prob`: Dropout probability for attention layers (0.0)
- `hidden_dropout_prob`: Dropout probability for the hidden layers (0.0)
- `drop_path_rate`: Dropout rate for stochastic depth (0.0)

### Preprocessing:

Before feeding videos into the model, ensure the frames are properly pre-processed:

- Resize frames to `224x224`
- Normalize pixel values (use the processor from the model, as shown in the code)

## License

This model is licensed under the **CC-BY-NC-4.0** license, which means it can be used for non-commercial purposes with proper attribution.

## Citation

If you use this model in your research or projects, please cite the following:

```bibtex
@misc{svector2024fal,
  title={FAL - Framework For Automated Labeling Of Videos (FALVideoClassifier)},
  author={SVECTOR},
  year={2024},
  url={https://www.svector.co.in},

}

```

## Contact

For any inquiries regarding this model or its implementation, you can contact the SVECTOR team at [email protected].

---