Update Readme ST Model Zoo
Browse files
README.md
CHANGED
@@ -1,10 +1,3 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/LICENSE.md
|
6 |
-
pipeline_tag: object-detection
|
7 |
-
---
|
8 |
# Tiny Yolo v2 quantized
|
9 |
|
10 |
## **Use case** : `Object detection`
|
@@ -64,51 +57,47 @@ For an image resolution of NxM and NC classes
|
|
64 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
65 |
|
66 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
67 |
-
|Model
|
68 |
-
|
69 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | COCO-Person | Int8 | 224x224x3
|
70 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite)
|
71 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | COCO-Person
|
72 |
-
|
73 |
|
74 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
75 |
-
| Model
|
76 |
-
|
77 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | COCO-Person
|
78 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite)
|
79 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | COCO-Person
|
80 |
-
|
81 |
|
82 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
83 |
|
84 |
-
| Model
|
85 |
-
|
86 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8
|
87 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8
|
88 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8
|
89 |
-
|
90 |
|
91 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
92 |
|
93 |
|
94 |
-
| Model
|
95 |
-
|
96 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8
|
97 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8
|
98 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8
|
99 |
-
|
100 |
|
101 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
102 |
|
103 |
|
104 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
105 |
|--------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
106 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
107 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz |
|
108 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
109 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz |
|
110 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
111 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz |
|
112 |
|
113 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
114 |
|
@@ -118,23 +107,24 @@ Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0]
|
|
118 |
|
119 |
| Model | Format | Resolution | AP |
|
120 |
|-------|--------|------------|----------------|
|
121 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8 | 192x192x3 |
|
122 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192.h5) | Float | 192x192x3 |
|
123 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 |
|
124 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224.h5) | Float | 224x224x3 |
|
125 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 |
|
126 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416.h5) | Float | 416x416x3 |
|
127 |
|
128 |
-
\* EVAL_IOU = 0.
|
129 |
|
130 |
### AP on ST Person dataset
|
|
|
131 |
|
132 |
| Model | Format | Resolution | AP |
|
133 |
|-------|--------|------------|----------------|
|
134 |
-
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 |
|
135 |
|
136 |
|
137 |
-
\* EVAL_IOU = 0.
|
138 |
|
139 |
## Retraining and Integration in a simple example:
|
140 |
|
@@ -167,5 +157,4 @@ Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/S
|
|
167 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
168 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
169 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
170 |
-
}
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Tiny Yolo v2 quantized
|
2 |
|
3 |
## **Use case** : `Object detection`
|
|
|
57 |
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
58 |
|
59 |
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
60 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
61 |
+
|------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|----------|----------------------|----------------------|-----------------------|------------------------|-------------------------|
|
62 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 392 | 0 | 10794.4 | 10.2.0 | 2.2.0 |
|
63 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | ST-Person | Int8 | 224x224x3 | STM32N6 | 392 | 0 | 10794.4 | 10.2.0 | 2.2.0 |
|
64 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6 | 1880.12 | 0 | 10818.4 | 10.2.0 | 2.2.0 |
|
|
|
65 |
|
66 |
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
67 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
68 |
+
|------------------------------------------------------------------------------------------------------------------|-------------|----------|--------------|---------------|--------------------|-----------------------|-------------|------------------------|-------------------------|
|
69 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 30.68 | 32.59 | 10.2.0 | 2.2.0 |
|
70 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | ST-Person | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 30.68 | 32.59 | 10.2.0 | 2.2.0 |
|
71 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | COCO-Person | Int8 | 416x416x3 | STM32N6570-DK | NPU/MCU | 50.81 | 19.68 | 10.2.0 | 2.2.0 |
|
|
|
72 |
|
73 |
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
74 |
|
75 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
76 |
+
|------------------------------------------------------------------------------------------------------------------|----------|--------------|----------|------------------|---------------|-----------------|--------------|-------------|---------------|------------------------|
|
77 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8 | 192x192x3 | STM32H7 | 220.6 KiB | 7.98 KiB | 10775.98 KiB | 55.85 KiB | 228.58 KiB | 10831.83 KiB | 10.2.0 |
|
78 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 249.35 | 7.98 KiB | 10775.98 | 55.24 | 257.33 | 10831.22 | 10.2.0 |
|
79 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | STM32H7 | 1263.07 | 8.03 KiB | 10775.98 | 55.29 | 1271.10 | 10831.27 | 10.2.0 |
|
|
|
80 |
|
81 |
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
82 |
|
83 |
|
84 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
85 |
+
|------------------------------------------------------------------------------------------------------------------|----------|--------------|------------------|--------------------|-------------|-----------------------|------------------------|
|
86 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 3006.3 ms | 10.2.0 |
|
87 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 2712.22 | 10.2.0 |
|
88 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 10441.33 | 10.2.0 |
|
|
|
89 |
|
90 |
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
91 |
|
92 |
|
93 |
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
94 |
|--------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
95 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 137.51 ms | 3.83 | 96.17 |0 | v6.1.0 | OpenVX |
|
96 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 481.09 ms | 2.57 | 97.43 |0 | v6.1.0 | OpenVX |
|
97 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 417.84 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
98 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 1302.07 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
99 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 623.35 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
100 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 2101.3 ms | NA | NA |100 | v6.1.0 | TensorFlowLite 2.18.0 |
|
101 |
|
102 |
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
103 |
|
|
|
107 |
|
108 |
| Model | Format | Resolution | AP |
|
109 |
|-------|--------|------------|----------------|
|
110 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192_int8.tflite) | Int8 | 192x192x3 | 26.2 % |
|
111 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_192/tiny_yolo_v2_192.h5) | Float | 192x192x3 | 27.5 % |
|
112 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | 28.8 % |
|
113 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_224/tiny_yolo_v2_224.h5) | Float | 224x224x3 | 30.9 % |
|
114 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416_int8.tflite) | Int8 | 416x416x3 | 41.4 % |
|
115 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_public_dataset/coco_2017_person/tiny_yolo_v2_416/tiny_yolo_v2_416.h5) | Float | 416x416x3 | 43.4 % |
|
116 |
|
117 |
+
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
|
118 |
|
119 |
### AP on ST Person dataset
|
120 |
+
This model has been trained using a STMicroelectronics proprietary dataset which is not provided as part of the STM32 model zoo. The ST person dataset has been built by aggregating several public datasets and by applying data augmentation on these public datasets. If users wish to retrain this model it has to be done using another dataset selected by the user.
|
121 |
|
122 |
| Model | Format | Resolution | AP |
|
123 |
|-------|--------|------------|----------------|
|
124 |
+
| [tiny_yolo_v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/object_detection/tiny_yolo_v2/ST_pretrainedmodel_custom_dataset/st_person/tiny_yolo_v2_224/tiny_yolo_v2_224_int8.tflite) | Int8 | 224x224x3 | 28.5 % |
|
125 |
|
126 |
|
127 |
+
\* EVAL_IOU = 0.5, NMS_THRESH = 0.5, SCORE_THRESH = 0.001, MAX_DETECTIONS = 100
|
128 |
|
129 |
## Retraining and Integration in a simple example:
|
130 |
|
|
|
157 |
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
158 |
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
159 |
bibsource = {dblp computer science bibliography, https://dblp.org}
|
160 |
+
}
|
|