Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,164 @@
|
|
1 |
-
---
|
2 |
-
license: other
|
3 |
-
license_name: sla0044
|
4 |
-
license_link: >-
|
5 |
-
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
license_name: sla0044
|
4 |
+
license_link: >-
|
5 |
+
https://github.com/STMicroelectronics/stm32aimodelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/LICENSE.md
|
6 |
+
pipeline_tag: object-detection
|
7 |
+
---
|
8 |
+
# ST YOLO LC V1 quantized
|
9 |
+
|
10 |
+
## **Use case** : `Object detection`
|
11 |
+
|
12 |
+
# Model description
|
13 |
+
|
14 |
+
|
15 |
+
ST Yolo LC v1 is a real-time object detection model targeted for real-time processing implemented in Tensorflow.
|
16 |
+
|
17 |
+
The model is quantized in int8 format using tensorflow lite converter.
|
18 |
+
|
19 |
+
## Network information
|
20 |
+
|
21 |
+
|
22 |
+
| Network information | Value |
|
23 |
+
|-------------------------|-----------------|
|
24 |
+
| Framework | TensorFlow Lite |
|
25 |
+
| Quantization | int8 |
|
26 |
+
| Paper | https://pjreddie.com/media/files/papers/YOLO9000.pdf |
|
27 |
+
|
28 |
+
The models are quantized using tensorflow lite converter.
|
29 |
+
|
30 |
+
|
31 |
+
## Network inputs / outputs
|
32 |
+
|
33 |
+
|
34 |
+
For an image resolution of NxM and NC classes
|
35 |
+
|
36 |
+
| Input Shape | Description |
|
37 |
+
| ----- | ----------- |
|
38 |
+
| (1, W, H, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
39 |
+
|
40 |
+
| Output Shape | Description |
|
41 |
+
| ----- | ----------- |
|
42 |
+
| (1, WxH, NAx(5+NC)) | FLOAT values Where WXH is the resolution of the output grid cell, NA is the number of anchors and NC is the number of classes|
|
43 |
+
|
44 |
+
|
45 |
+
## Recommended Platforms
|
46 |
+
|
47 |
+
|
48 |
+
| Platform | Supported | Recommended |
|
49 |
+
|----------|-----------|-------------|
|
50 |
+
| STM32L0 | [] | [] |
|
51 |
+
| STM32L4 | [] | [] |
|
52 |
+
| STM32U5 | [] | [] |
|
53 |
+
| STM32H7 | [x] | [x] |
|
54 |
+
| STM32MP1 | [x] | [x] |
|
55 |
+
| STM32MP2 | [x] | [] |
|
56 |
+
| STM32N6 | [x] | [] |
|
57 |
+
|
58 |
+
# Performances
|
59 |
+
|
60 |
+
## Metrics
|
61 |
+
|
62 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
63 |
+
|
64 |
+
|
65 |
+
|
66 |
+
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
67 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB)| Weights Flash (KiB)| STM32Cube.AI version | STEdgeAI Core version |
|
68 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
69 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite)| COCO-Person | Int8 | 192x192x3 | STM32N6 | 252 | 0.0 | 328.19 | 10.0.0 | 2.0.0 |
|
70 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite)| COCO-Person | Int8 | 256x256x3 | STM32N6 | 343 | 0.0 | 328.19 | 10.0.0 | 2.0.0 |
|
71 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite)| COCO-Person | Int8 | 256x256x3 | STM32N6 | 576 | 0.0 | 328.19 | 10.0.0 | 2.0.0 |
|
72 |
+
|
73 |
+
|
74 |
+
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
75 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
76 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
77 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_192/st_yolo_lc_v1_192_int8.tflite) | COCO-Person | Int8 | 192x192x3 | STM32N6570-DK | NPU/MCU | 1.96 | 510.20 | 10.0.0 | 2.0.0 |
|
78 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_224/st_yolo_lc_v1_224_int8.tflite) | COCO-Person | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 2.35 | 425.53 | 10.0.0 | 2.0.0 |
|
79 |
+
| [st_yolo_lc_v1](https://github.com/STMicroelectronics/stm32ai-modelzoo/object_detection/st_yolo_lc_v1/ST_pretrainedmodel_public_dataset/coco_2017_person/st_yolo_lc_v1_256/st_yolo_lc_v1_256_int8.tflite) | COCO-Person | Int8 256x256x3 | STM32N6570-DK | NPU/MCU | 3.01 | 332.23 | 10.0.0 | 2.0.0 |
|
80 |
+
|
81 |
+
### Reference **MCU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
82 |
+
|
83 |
+
|
84 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
85 |
+
|-------------------|--------|------------|---------|----------------|-------------|---------------|-----------------|--------------|-------------|-----------------------|
|
86 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | STM32H7 | 166.29 KiB | 8.09 KiB | 276.73 KiB | 53.48 KiB | 174.38 KiB | 330.21 KiB | 10.0.0 |
|
87 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | STM32H7 | 217.29 KiB | 8.09 KiB | 276.73 KiB | 53.48 KiB | 225.38 KiB | 330.21 KiB | 10.0.0 |
|
88 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | STM32H7 | 278.29 KiB | 8.09 KiB | 276.73 KiB | 53.48 KiB | 286.38 KiB | 330.21 KiB | 10.0.0 |
|
89 |
+
|
90 |
+
|
91 |
+
### Reference **MCU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
92 |
+
|
93 |
+
|
94 |
+
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
95 |
+
|-------------------|--------|------------|------------------|------------------|-------------|---------------------|-----------------------|
|
96 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 179.01 | 10.0.0 |
|
97 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 244.7 | 10.0.0 |
|
98 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 321.38 | 10.0.0 |
|
99 |
+
|
100 |
+
|
101 |
+
### Reference **MPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
102 |
+
|
103 |
+
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework |
|
104 |
+
|---------------|--------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------|
|
105 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 12.00 ms | 2.62 | 97.38 |0 | v5.1.0 | OpenVX |
|
106 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 17.92 ms | 2.43 | 97.57 |0 | v5.1.0 | OpenVX |
|
107 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 14.43 ms | 3.20 | 96.80 |0 | v5.1.0 | OpenVX |
|
108 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 32.84 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
109 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 45.13 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
110 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 59.38 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
111 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 52.64 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
112 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 71.26 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
113 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 93.50 ms | NA | NA |100 | v5.1.0 | TensorFlowLite 2.11.0 |
|
114 |
+
|
115 |
+
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization**
|
116 |
+
|
117 |
+
### AP on COCO Person dataset
|
118 |
+
|
119 |
+
|
120 |
+
Dataset details: [link](https://cocodataset.org/#download) , License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/legalcode) , Quotation[[1]](#1) , Number of classes: 80, Number of images: 118,287
|
121 |
+
|
122 |
+
| Model | Format | Resolution | AP |
|
123 |
+
|-------|--------|------------|----------------|
|
124 |
+
| st_yolo_lc_v1 | Int8 | 192x192x3 | 39.0 % |
|
125 |
+
| st_yolo_lc_v1 | Float | 192x192x3 | 39.2 % |
|
126 |
+
| st_yolo_lc_v1 | Int8 | 224x224x3 | 42.94 % |
|
127 |
+
| st_yolo_lc_v1 | Float | 224x224x3 | 41.7 % |
|
128 |
+
| st_yolo_lc_v1 | Int8 | 256x256x3 | 43.8 % |
|
129 |
+
| st_yolo_lc_v1 | Float | 256x256x3 | 44.7 % |
|
130 |
+
|
131 |
+
\* EVAL_IOU = 0.4, NMS_THRESH = 0.5, SCORE_THRESH =0.001
|
132 |
+
|
133 |
+
|
134 |
+
## Retraining and Integration in a simple example:
|
135 |
+
|
136 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
137 |
+
# References
|
138 |
+
|
139 |
+
|
140 |
+
<a id="1">[1]</a>
|
141 |
+
“Microsoft COCO: Common Objects in Context”. [Online]. Available: https://cocodataset.org/#download.
|
142 |
+
@article{DBLP:journals/corr/LinMBHPRDZ14,
|
143 |
+
author = {Tsung{-}Yi Lin and
|
144 |
+
Michael Maire and
|
145 |
+
Serge J. Belongie and
|
146 |
+
Lubomir D. Bourdev and
|
147 |
+
Ross B. Girshick and
|
148 |
+
James Hays and
|
149 |
+
Pietro Perona and
|
150 |
+
Deva Ramanan and
|
151 |
+
Piotr Doll{'{a} }r and
|
152 |
+
C. Lawrence Zitnick},
|
153 |
+
title = {Microsoft {COCO:} Common Objects in Context},
|
154 |
+
journal = {CoRR},
|
155 |
+
volume = {abs/1405.0312},
|
156 |
+
year = {2014},
|
157 |
+
url = {http://arxiv.org/abs/1405.0312},
|
158 |
+
archivePrefix = {arXiv},
|
159 |
+
eprint = {1405.0312},
|
160 |
+
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200},
|
161 |
+
biburl = {https://dblp.org/rec/bib/journals/corr/LinMBHPRDZ14},
|
162 |
+
bibsource = {dblp computer science bibliography, https://dblp.org}
|
163 |
+
}
|
164 |
+
|