Image Classification
FBAGSTM commited on
Commit
7b1b0d2
·
verified ·
1 Parent(s): f7a97eb

Update ST Model Zoo

Browse files
Files changed (1) hide show
  1. README.md +16 -23
README.md CHANGED
@@ -1,10 +1,3 @@
1
- ---
2
- license: other
3
- license_name: sla0044
4
- license_link: >-
5
- https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
6
- pipeline_tag: image-classification
7
- ---
8
  # ResNet50 v2
9
 
10
  ## **Use case** : `Image classification`
@@ -69,38 +62,38 @@ For an image resolution of NxM and P classes
69
 
70
  ### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
71
  |Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
72
- |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
73
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
74
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | | | | 10.0.0 | 2.0.0 |
75
 
76
  ### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
77
- | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
78
- |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
79
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
80
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | | | 10.0.0 | 2.0.0 |
81
 
82
 
83
  ### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
84
 
85
- | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
86
- |--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-------------|-----------------------|
87
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 23240.96 KiB | 226.05 KiB | 2183.09 KiB | 23467.01 KiB | 10.0.0 |
88
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.02 KiB | 25042.47 KiB | 226.05 KiB | 2183.09 KiB | 25268.52 KiB | 10.0.0 |
89
 
90
 
91
  ### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
92
 
93
 
94
  | Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
95
- |-------------------|--------|------------|------------------|------------------|-----------|------------------|-----------------------|
96
- | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11354.82 ms | 10.0.0 |
97
- | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11368.81 ms | 10.0.0 |
98
 
99
 
100
 
101
  ### Accuracy with Food-101 dataset
102
 
103
- Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) , License [-](), Quotation[[1]](#1) , Number of classes: 101 , Number of images: 101 000
104
 
105
  | Model | Format | Resolution | Top 1 Accuracy |
106
  |-------|--------|------------|----------------|
@@ -110,7 +103,7 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
110
 
111
  ### Accuracy with ImageNet dataset
112
 
113
- Dataset details: [link](https://www.image-net.org), License: BSD-3-Clause, Quotation[[4]](#4)
114
  Number of classes: 1000.
115
  To perform the quantization, we calibrated the activations with a random subset of the training set.
116
  For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
 
 
 
 
 
 
 
 
1
  # ResNet50 v2
2
 
3
  ## **Use case** : `Image classification`
 
62
 
63
  ### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
64
  |Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
65
+ |----------|------------------|--------|-------------|------------------|--------------|--------------|---------------|----------------------|-------------------------|
66
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136 | 23833.61 | 10.2.0 | 2.2.0 |
67
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136.0 | 25633.55 | 10.2.0 | 2.2.0 |
68
 
69
  ### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
70
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
71
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-----------|----------------------|-------------------------|
72
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 226.16 | 4.42 | 10.2.0 | 2.2.0 |
73
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 231.59 | 4.31 | 10.2.0 | 2.2.0 |
74
 
75
 
76
  ### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
77
 
78
+ | Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
79
+ |--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-----------------|-----------------------|
80
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.03 KiB | 23240.96 KiB | 225.32 KiB | 2183.1 KiB | 23466.28 KiB | 10.2.0 |
81
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.03 KiB | 25042.47 KiB | 225.32 KiB | 2183.1 KiB | 25267.79 KiB | 10.2.0 |
82
 
83
 
84
  ### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
85
 
86
 
87
  | Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
88
+ |-------------------|--------|------------|------------------|------------------|-----------|---------------------|-----------------------|
89
+ | [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11360.76 ms | 10.2.0 |
90
+ | [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11370.07 | 10.2.0 |
91
 
92
 
93
 
94
  ### Accuracy with Food-101 dataset
95
 
96
+ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[1]](#1) , Number of classes: 101 , Number of images: 101 000
97
 
98
  | Model | Format | Resolution | Top 1 Accuracy |
99
  |-------|--------|------------|----------------|
 
103
 
104
  ### Accuracy with ImageNet dataset
105
 
106
+ Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
107
  Number of classes: 1000.
108
  To perform the quantization, we calibrated the activations with a random subset of the training set.
109
  For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.