Update ST Model Zoo
Browse files
README.md
CHANGED
|
@@ -1,10 +1,3 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: sla0044
|
| 4 |
-
license_link: >-
|
| 5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/LICENSE.md
|
| 6 |
-
pipeline_tag: image-classification
|
| 7 |
-
---
|
| 8 |
# ResNet50 v2
|
| 9 |
|
| 10 |
## **Use case** : `Image classification`
|
|
@@ -69,38 +62,38 @@ For an image resolution of NxM and P classes
|
|
| 69 |
|
| 70 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 71 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
| 72 |
-
|
| 73 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 |
|
| 74 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet
|
| 75 |
|
| 76 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 77 |
-
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec
|
| 78 |
-
|
| 79 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU |
|
| 80 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU |
|
| 81 |
|
| 82 |
|
| 83 |
### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 84 |
|
| 85 |
-
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash
|
| 86 |
-
|
| 87 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.
|
| 88 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.
|
| 89 |
|
| 90 |
|
| 91 |
### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 92 |
|
| 93 |
|
| 94 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
| 95 |
-
|
| 96 |
-
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz |
|
| 97 |
-
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz |
|
| 98 |
|
| 99 |
|
| 100 |
|
| 101 |
### Accuracy with Food-101 dataset
|
| 102 |
|
| 103 |
-
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/)
|
| 104 |
|
| 105 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 106 |
|-------|--------|------------|----------------|
|
|
@@ -110,7 +103,7 @@ Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-1
|
|
| 110 |
|
| 111 |
### Accuracy with ImageNet dataset
|
| 112 |
|
| 113 |
-
Dataset details: [link](https://www.image-net.org),
|
| 114 |
Number of classes: 1000.
|
| 115 |
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
| 116 |
For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# ResNet50 v2
|
| 2 |
|
| 3 |
## **Use case** : `Image classification`
|
|
|
|
| 62 |
|
| 63 |
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 64 |
|Model | Dataset | Format | Resolution | Series | Internal RAM | External RAM | Weights Flash | STM32Cube.AI version | STEdgeAI Core version |
|
| 65 |
+
|----------|------------------|--------|-------------|------------------|--------------|--------------|---------------|----------------------|-------------------------|
|
| 66 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136 | 23833.61 | 10.2.0 | 2.2.0 |
|
| 67 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6 | 2308.06 | 3136.0 | 25633.55 | 10.2.0 | 2.2.0 |
|
| 68 |
|
| 69 |
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 70 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
| 71 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-----------|----------------------|-------------------------|
|
| 72 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 226.16 | 4.42 | 10.2.0 | 2.2.0 |
|
| 73 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 231.59 | 4.31 | 10.2.0 | 2.2.0 |
|
| 74 |
|
| 75 |
|
| 76 |
### Reference **MCU** memory footprint based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 77 |
|
| 78 |
+
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STM32Cube.AI version |
|
| 79 |
+
|--------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------|----------------|-------------|---------------|------------|-------------|-----------------|-----------------------|
|
| 80 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.03 KiB | 23240.96 KiB | 225.32 KiB | 2183.1 KiB | 23466.28 KiB | 10.2.0 |
|
| 81 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H7 | 2142.07 KiB | 41.03 KiB | 25042.47 KiB | 225.32 KiB | 2183.1 KiB | 25267.79 KiB | 10.2.0 |
|
| 82 |
|
| 83 |
|
| 84 |
### Reference **MCU** inference time based on Food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 85 |
|
| 86 |
|
| 87 |
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STM32Cube.AI version |
|
| 88 |
+
|-------------------|--------|------------|------------------|------------------|-----------|---------------------|-----------------------|
|
| 89 |
+
| [ResNet50 v2 fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/ST_pretrainedmodel_public_dataset/food-101/resnet50_v2_224_fft/resnet50_v2_224_fft_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11360.76 ms | 10.2.0 |
|
| 90 |
+
| [ResNet50 v2](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet50v2/Public_pretrainedmodel_public_dataset/ImageNet/resnet50_v2_224/resnet50_v2_224_int8.tflite) | Int8 | 224x224x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 11370.07 | 10.2.0 |
|
| 91 |
|
| 92 |
|
| 93 |
|
| 94 |
### Accuracy with Food-101 dataset
|
| 95 |
|
| 96 |
+
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/), Quotation[[1]](#1) , Number of classes: 101 , Number of images: 101 000
|
| 97 |
|
| 98 |
| Model | Format | Resolution | Top 1 Accuracy |
|
| 99 |
|-------|--------|------------|----------------|
|
|
|
|
| 103 |
|
| 104 |
### Accuracy with ImageNet dataset
|
| 105 |
|
| 106 |
+
Dataset details: [link](https://www.image-net.org), Quotation[[4]](#4).
|
| 107 |
Number of classes: 1000.
|
| 108 |
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
| 109 |
For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
|