FBAGSTM commited on
Commit
a484b71
·
verified ·
1 Parent(s): 6b7a23d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -4
README.md CHANGED
@@ -1,4 +1,69 @@
1
- ---
2
- license: apache-2.0
3
- license_name: sla0044
4
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_name: sla0044
4
+ ---
5
+ # Hand landmarks quantized
6
+
7
+ ## **Use case** : `Pose estimation`
8
+
9
+ # Model description
10
+
11
+
12
+ Hand landmarks is a single pose estimation model targeted for real-time processing implemented in Tensorflow.
13
+
14
+ The model is quantized in int8 format using tensorflow lite converter.
15
+
16
+ ## Network information
17
+
18
+
19
+ | Network information | Value |
20
+ |-------------------------|-----------------|
21
+ | Framework | TensorFlow Lite |
22
+ | Quantization | int8 |
23
+ | Provenance | https://github.com/PINTO0309/PINTO_model_zoo/tree/main/033_Hand_Detection_and_Tracking
24
+ | Paper | https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Hand%20Tracking%20(Lite_Full)%20with%20Fairness%20Oct%202021.pdf |
25
+
26
+
27
+ ## Networks inputs / outputs
28
+
29
+ With an image resolution of NxM with K keypoints to detect :
30
+
31
+ | Input Shape | Description |
32
+ | ----- | ----------- |
33
+ | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
34
+
35
+ | Output Shape | Description |
36
+ | ----- | ----------- |
37
+ | (1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints |
38
+
39
+ ## Recommended Platforms
40
+
41
+ | Platform | Supported | Recommended |
42
+ |----------|-----------|-------------|
43
+ | STM32L0 | [] | [] |
44
+ | STM32L4 | [] | [] |
45
+ | STM32U5 | [] | [] |
46
+ | STM32H7 | [] | [] |
47
+ | STM32MP1 | [x] | [] |
48
+ | STM32MP2 | [x] | [x] |
49
+ | STM32N6 | [x] | [x] |
50
+
51
+ # Performances
52
+
53
+ ## Metrics
54
+
55
+ Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
56
+
57
+ ### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
58
+ |Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
59
+ |----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
60
+ | [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1739.5 | 0.0 | 3283.38 | 10.0.0 | 2.0.0 |
61
+
62
+ ### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
63
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
64
+ |--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
65
+ | [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | custom_dataset_hands_21kpts | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 20.75 | 48.19 | 10.0.0 | 2.0.0 |
66
+
67
+
68
+
69
+