Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,69 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
license_name: sla0044
|
4 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
license_name: sla0044
|
4 |
+
---
|
5 |
+
# Hand landmarks quantized
|
6 |
+
|
7 |
+
## **Use case** : `Pose estimation`
|
8 |
+
|
9 |
+
# Model description
|
10 |
+
|
11 |
+
|
12 |
+
Hand landmarks is a single pose estimation model targeted for real-time processing implemented in Tensorflow.
|
13 |
+
|
14 |
+
The model is quantized in int8 format using tensorflow lite converter.
|
15 |
+
|
16 |
+
## Network information
|
17 |
+
|
18 |
+
|
19 |
+
| Network information | Value |
|
20 |
+
|-------------------------|-----------------|
|
21 |
+
| Framework | TensorFlow Lite |
|
22 |
+
| Quantization | int8 |
|
23 |
+
| Provenance | https://github.com/PINTO0309/PINTO_model_zoo/tree/main/033_Hand_Detection_and_Tracking
|
24 |
+
| Paper | https://storage.googleapis.com/mediapipe-assets/Model%20Card%20Hand%20Tracking%20(Lite_Full)%20with%20Fairness%20Oct%202021.pdf |
|
25 |
+
|
26 |
+
|
27 |
+
## Networks inputs / outputs
|
28 |
+
|
29 |
+
With an image resolution of NxM with K keypoints to detect :
|
30 |
+
|
31 |
+
| Input Shape | Description |
|
32 |
+
| ----- | ----------- |
|
33 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
34 |
+
|
35 |
+
| Output Shape | Description |
|
36 |
+
| ----- | ----------- |
|
37 |
+
| (1, Kx3) | FLOAT values Where Kx3 are the (x,y,conf) values of each keypoints |
|
38 |
+
|
39 |
+
## Recommended Platforms
|
40 |
+
|
41 |
+
| Platform | Supported | Recommended |
|
42 |
+
|----------|-----------|-------------|
|
43 |
+
| STM32L0 | [] | [] |
|
44 |
+
| STM32L4 | [] | [] |
|
45 |
+
| STM32U5 | [] | [] |
|
46 |
+
| STM32H7 | [] | [] |
|
47 |
+
| STM32MP1 | [x] | [] |
|
48 |
+
| STM32MP2 | [x] | [x] |
|
49 |
+
| STM32N6 | [x] | [x] |
|
50 |
+
|
51 |
+
# Performances
|
52 |
+
|
53 |
+
## Metrics
|
54 |
+
|
55 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
56 |
+
|
57 |
+
### Reference **NPU** memory footprint based on COCO Person dataset (see Accuracy for details on dataset)
|
58 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
59 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
60 |
+
| [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | COCO-Person | Int8 | 224x224x3 | STM32N6 | 1739.5 | 0.0 | 3283.38 | 10.0.0 | 2.0.0 |
|
61 |
+
|
62 |
+
### Reference **NPU** inference time based on COCO Person dataset (see Accuracy for details on dataset)
|
63 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
64 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
65 |
+
| [hand_landmarks](https://github.com/STMicroelectronics/stm32ai-modelzoo/pose_estimation/hand_landmarks/Public_pretrainedmodel_custom_dataset/custom_dataset_hands_21kpts/hand_landmarks_full_224_int8_pc.tflite) | custom_dataset_hands_21kpts | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 20.75 | 48.19 | 10.0.0 | 2.0.0 |
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|